Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The northern Indian Ocean has been warming steadily for over a half-century, especially the north-western Indian Ocean. It is widely reported that the increasing sea surface temperature in the global oceans decreases phytoplankton biomass and productivity. The impacts of long-term variations in the sea surface properties on the phytoplankton biomass (chlorophyll a) are least studied in the northern Indian Ocean. In this study, we have retrieved satellite, model, and ARGO float data sets to investigate the long-term variations in the distributions and trends of major oceanic variables for a better understanding of the respective changes that occurred in chlorophyll a concentration in the central regions of the Arabian Sea (AS) and the Bay of Bengal (BB). We have selected variables such as sea surface temperature (SST), sea surface salinity (SSS), photosynthetically available radiation (PAR), euphotic depth (ZEU), mixed layer depth (MLD), wind speed, mean sea level anomaly (MSLA), surface currents, etc., to relate with chlorophyll a. We found significant increasing trends in SST and positive-MSLA in both basins, and the chlorophyll a was decreased in the AS but contrastingly increased in the BB. Further data analysis revealed the possible reasons, such as seasonal changes in mean sea level anomaly and meridional currents, for the increasing trend of chlorophyll a in the central Bay of Bengal. The northward flow of the meridional currents during the southwest monsoon (SWM), transports the nutrient-rich water from the coastal upwelling zone of the southwest coast of India to the southern and central BB, and enhances chlorophyll a. Contrastingly, the southward flow of low-saline and nutrient-depleted Bay of Bengal water reduces the chlorophyll a. In addition, the large area of cold-core eddies found during the NEM enhanced the chlorophyll a in the central BB. Though contrasting trends between both basins in chlorophyll a distribution were found, the mean concentration of chlorophyll a in the northern Indian Ocean decreases. The present study signifies the importance of monsoon currents and eddies in regulating the chlorophyll a biomass and primary productivity in the AS and BB.
Czasopismo
Rocznik
Tom
Strony
art. no. 66303
Opis fizyczny
Bibliogr. 90 poz., rys. wykr.
Twórcy
autor
- CSIR – National Institute of Oceanography, Dona Paula, Goa, India
autor
- CSIR – National Institute of Oceanography, Dona Paula, Goa, India
- CSIR – National Institute of Oceanography, Dona Paula, Goa, India
autor
- CSIR – National Institute of Oceanography, Dona Paula, Goa, India
Bibliografia
- 1. Aksnes, D.L., Ohman, M.D., 2009. Multi-decadal shoaling of the euphotic zone in the southern sector of the California Current System, Limnol. Oceanogr. 54, 1272-1281.
- 2.
- Albin, K.J., Jyothibabu, R., Alok, K.T., Santhikrishnan, S., Sarath, S., Sudheesh, V., Sherin, C.K., Balachandran, K.K., Devi, C.R.A., Gupta, G.V.M., 2022. Distinctive phytoplankton size responses to the nutrient enrichment ofcoastal upwelling and winter convection in the eastern Arabian Sea. Prog. Oceanogr. 203, 102779.
- 3. Anil, A.C., Desai, D.V., Khandeparker, L., Krishnamurthy, V., Mapari, K., Mitbavkar, S., Patil, J.S., Sarma, V., Sawant, S.S., 2021. Short term response of plankton community to nutrient enrichment in central eastern Arabian Sea: Elucidation through mesocosm experiments, J. Environ. Manage. 288, 112390.
- 4. Araujo, M.B., Rahbek, C., 2006. How does climate change affect biodiversity?, Science 313, 1396-1397. Banse, K., 1968. Hydrography of the Arabian Sea Shelf of India and Pakistan and effects on demersal fishes, Deep- Sea Res. 15, 45-79. https://doi.org/10.1016/0011-7471(68)90028-4
- 5. Batten, S.D., Crawford, W.R., 2005. The influence of coastal origin eddies on oceanic plankton distributions in the eastern Gulf of Alaska, Deep-Sea Res. Pt II 52, 991-1009.
- 6. Behrenfeld, M.J., Boss, E., Siegel, D.A., Shea, D.M., 2005. Carbon-based ocean productivity and phytoplankton physiology from space, Glob. Biogeochem. Cy. 19.
- 7. Behrenfeld, M.J., O’Malley, R.T., Siegel, D.A., McClain, C.R., Sarmiento, J.L., Feldman, G.C., Milligan, A.J., Falkowski, P.G., Letelier, R.M., Boss, E.S., 2006. Climate-driven trends in contemporary ocean productivity, Nature 444, 752-755.
- 8. Boyce, D.G., Lewis, M.R., Worm, B., 2010. Global phytoplankton decline over the past century, Nature 466, 591-596.
- 9. Calbet, A., Sazhin, A.F., Nejstgaard, J.C., Berger, S.A., Tait, Z.S., Olmos, L., Sousoni, D., Isari, S., Martinez, R.A., Bouquet, J.-M., 2014. Future climate scenarios for a coastal productive planktonic food web resulting in microplankton phenology changes and decreased trophic transfer efficiency, PloS One 9, e94388.
- 10. Chen, X., Pan, D., Bai, Y., He, X., Wang, T., 2014. Are the trends in the surface chlorophyll opposite between the South China Sea and the Bay of Bengal?, [in:] Remote Sensing of the Ocean, Sea Ice, Coastal Waters, and Large Water Regions Conference Proceedings 2014, SPIE, 270-277.
- 11. Chinnadurai, K., Retnamma, J., Nagarathinam, A., Subramanian, P.R., Singaram, P., Shoba, S., 2021. Microplankton size structure induced by a warm-core eddy in the western Bay of Bengal: Role of Trichodesmium abundance, Oceanologia 63(3), 283-300. https://doi.org/10.1016/j.oceano.2021.02.003
- 12. Chowdhury, M., Biswas, H., Mitra, A., Silori, S., Sharma, D., Bandyopadhyay, D., Shaik, A.U.R., Fernandes, V., Narvekar, J., 2021. Southwest monsoon-driven changes in the phytoplankton community structure in the central Arabian Sea (2017–2018): After two decades of JGOFS, Prog. Oceanogr. 197, 102654.
- 13. Coghlan, A., 2018. A little book of R for time series, Available online at: https://buildmedia.readthedocs.org/media/pdf/a-little-book-of-r-for-time-series/latest/a-little-book-of-r-for-time-series.pdf
- 14. Dalpadado, P., Arrigo, K.R., van Dijken, G.L., Gunasekara, S.S., Ostrowski, M., Bianchi, G., Sperfeld, E., 2021. Warming of the Indian Ocean and its impact on temporal and spatial dynamics of primary production, Prog. Oceanogr. 198, 102688.
- 15. Dandapat, S., Chakraborty, A., 2016. Mesoscale eddies in the Western Bay of Bengal as observed from satellite altimetry in 1993–2014: statistical characteristics, variability and three-dimensional properties, IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 9, 5044-5054.
- 16. Doney, S.C., 2006. Plankton in a warmer world, Nature 444, 695-696.
- 17. Falkowski, P.G., Fenchel, T., Delong, E.F., 2008. The microbial engines that drive Earth’s biogeochemical cycles, Science 320, 1034-1039.
- 18. Feng, M., Majewski, L.J., Fandry, C.B., Waite, A.M., 2007. Characteristics of two counter-rotating eddies in the Leeuwin Current system off the Western Australian coast, Deep Sea Res. Pt. II 54, 961-980. https://doi.org/10.1016/j.dsr2.2006.11.022
- 19. Friendly, M., 2002. Corrgrams: Exploratory displays for correlation matrices, Am. Stat. 56, 316-324. Giorgi, F., 2005. Climate change prediction, Clim. Change 73, 239-265.
- 20. Goes, J.I., Thoppil, P.G., Gomes, H. do R., Fasullo, J.T., 2005. Warming of the Eurasian landmass is making the Arabian Sea more productive, Science 308, 545-547.
- 21. Gopalakrishna, V.V., Murty, V.S.N., Sengupta, D., Shenoy, S., Araligidad, N., 2002. Upper ocean stratification and circulation in the northern Bay of Bengal during southwest monsoon of 1991, Cont. Shelf Res. 22, 791-802. https://doi.org/10.1016/S0278-4343(01)00084-X
- 22. Gregg, W.W., Casey, N.W., 2007. Modeling coccolithophores in the global oceans, Deep Sea Res. Pt. II 54, 447-477. https://doi.org/10.1016/j.dsr2.2006.12.007
- 23. Gregg, W.W., Rousseaux, C.S., 2019. Global ocean primary production trends in the modern ocean color satellite record (1998–2015), Environ. Res. Lett. 14, 124011.
- 24. Guinehut, S., Le Traon, P.Y., Larnicol, G., Philipps, S., 2004. Combining Argo and remote-sensing data to estimate the ocean three-dimensional temperature fields-a first approach based on simulated observations, J. Marine Syst. 46, 85-98.
- 25. Hosoda, S., Ohira, T., Sato, K., Suga, T., 2010. Improved description of global mixed-layer depth using Argo profiling floats, J. Oceanogr. 66, 773-787. https://doi.org/10.1007/s10872-010-0063-3
- 26. Huot, Y., Brown, C.A., Cullen, J.J., 2005. New algorithms for MODIS sun-induced chlorophyll fluorescence and a comparison with present data products, Limnol. Oceanogr. Methods 3, 108-130.
- 27. Jiang, R., Wang, Y.-S., 2018. Modeling the ecosystem response to summer coastal upwelling in the northern South China Sea, Oceanologia 60 (1), 32-51.
- 28. Jorgensen, E.G., 1968. The adaptation of plankton algae: II. Aspects of the temperature adaptation of Skeletonema costatum, Physiol. Plant. 21, 423-427.
- 29. Jyothibabu, R., Arunpandi, N., Jagadeesan, L., Karnan, C., Lallu, K.R., Vinayachandran, P.N., 2018. Response of phytoplankton to heavy cloud cover and turbidity in the northern Bay of Bengal, Nature Sci. Rep. 8, 1-15. https://doi.org/10.1038/s41598-018-29586-1
- 30. Jyothibabu, R., Karnan, C., Arunpandi, N., Santhi Krishnan, S., Balachandran, K.K., Sahu, K.C., 2021. Significantly dominant warm-core eddies: An ecological indicator of the basin-scale low biological production in the Bay of Bengal, Ecol. Indic. 121, 107016. https://doi.org/10.1016/j.ecolind.2020.107016
- 31. Jyothibabu, R., Madhu, N.V., Habeebrehman, H., Jayalakshmy, K.V., Nair, K.K.C., Achuthankutty, C.T., 2010. Reevaluation of “paradox of mesozooplankton” in the eastern Arabian Sea based on ship and satellite observations, J. Marine Syst. 81, 235-251.
- 32. Jyothibabu, R., Vinayachandran, P.N., Madhu, N.V., Robin, R.S., Karnan, C., Jagadeesan, L., Anjusha, A., 2015. Phytoplankton size structure in the southern Bay of Bengal modified by the Summer Monsoon Current and associated eddies: Implications on the vertical biogenic flux, J. Marine Syst. 143, 98-119. https://doi.org/10.1016/j.jmarsys.2014.10.018
- 33. Keen, T.R., Kindle, J.C., Young, D.K., 1997. The interaction of southwest monsoon upwelling, advection and primary production in the northwest Arabian Sea, J. Marine Syst. 13, 61-82.
- 34. Kerr, R.A., 2012. Experts agree global warming is melting the world rapidly, Science 338, 1138.
- 35. Khan, T.M.A., Quadir, D.A., Murty, T.S., Sarker, M.A., 2004. Seasonal and interannual sea surface temperature variability in the coastal cities of Arabian Sea and Bay of Bengal, Nat. Hazards 31, 549-560.
- 36. Killick, R., Fearnhead, P., Eckley, I.A., 2012. Optimal detection of changepoints with a linear computational cost, J. Am. Stat. Assoc. 107, 1590-1598.
- 37. Kumar, G.S., Prakash, S., Ravichandran, M., Narayana, A.C., 2016. Trends and relationship between chlorophyll-a and sea surface temperature in the central equatorial Indian Ocean, Remote Sens. Lett. 7, 1093-1101. https://doi.org/10.1080/2150704X.2016.1210835
- 38. Lee, Z., Weidemann, A., Kindle, J., Arnone, R., Carder, K.L., Davis, C., 2007. Euphotic zone depth: Its derivation and implication to ocean-color remote sensing, J. Geophys. Res.-Oceans 112. https://doi.org/10.1029/2006JC003802
- 39. Lewandowska, A.M., Hillebrand, H., Lengfellner, K., Sommer, U., 2014. Temperature effects on phytoplankton diversity – the zooplankton link, J. Sea Res. 85, 359-364.
- 40. Li, H., Xu, F., Zhou, W., Wang, D., Wright, J.S., Liu, Z., Lin, Y., 2017. Development of a global gridded Argo data set with Barnes successive corrections, J. Geophys. Res.-Oceans 122, 866-889. https://doi.org/10.1002/2016JC012285
- 41. Liu, M., Liu, X., Ma, A., Li, T., Du, Z., 2014. Spatio-temporal stability and abnormality of chlorophyll-a in the Northern South China Sea during 2002–2012 from MODIS images using wavelet analysis, Cont. Shelf Res. 75, 15-27.
- 42. Lotliker, A.A., Baliarsingh, S.K., Sahu, K.C., Kumar, T.S., 2020. Long-term chlorophyll-a dynamics in tropical coastal waters of the western Bay of Bengal, Environ. Sci. Pollut. Res. 27, 6411-6419.
- 43. Luo, J.-J., Sasaki, W., Masumoto, Y., 2012. Indian Ocean warming modulates Pacific climate change, Proc. Natl. Acad. Sci. 109, 18701-18706.
- 44. Ma, C., Zhao, J., Ai, B., Sun, S., Zhang, G., Huang, W., Wang, G., 2021. Assessing responses of phytoplankton to consecutive typhoons by combining Argo, remote sensing and numerical simulation data, Sci. Total Environ. 790, 148086.
- 45. Madhupratap, M., Gopalakrishnan, T.C., Haridas, P., Nair, K.K.C., Aravindakshan, P.N., Padmavati, G., Paul, S., 1996. Lack of seasonal and geographic variation in mesozooplankton biomass in the Arabian Sea and its structure in the mixed layer, Curr. Sci. 17(11), 863-868.
- 46. Mahadevan, A., Jaeger, G.S., Freilich, M., Omand, M.M., Shroyer, E.L., Sengupta, D., 2016. Freshwater in the Bay of Bengal: Its fate and role in air-sea heat exchange, Oceanography 29, 72-81.
- 47. McCulloch, M.T., Winter, A., Sherman, C.E., Trotter, J.A., 2024. 300 years of sclerosponge thermometry shows global warming has exceeded 1.5°C, Nat. Clim. Change° 14, 171-177. https://doi.org/10.1038/s41558-023-01919-7
- 48. Miranda, J., Baliarsingh, S.K., Lotliker, A.A., Sahoo, S., Sahu, K.C., Kumar, T.S., 2020. Long-term trend and environmental determinants of phytoplankton biomass in coastal waters of northwestern Bay of Bengal, Environ. Monit. Assess. 192, 1-13.
- 49. Mishra, A.K., Dwivedi, S., Das, S., 2019. Role of Arabian Sea warming on the Indian summer monsoon rainfall in a regional climate model, Int. J. Climatol. 40, 2226-2238.
- 50. Mohan, S., Mishra, S.K., Sahany, S., Behera, S., 2021. Longterm variability of Sea Surface Temperature in the Tropical Indian Ocean in relation to climate change and variability, Glob. Planet. Change 199, 103436.
- 51. Montagnes, D.J.S., Franklin, M., 2001. Effect of temperature on diatom volume, growth rate, and carbon and nitrogen content: reconsidering some paradigms, Limnol. Oceanogr. 46, 2008–2018.
- 52. Murphy, G.E.P., Romanuk, T.N., Worm, B., 2019. Cascading effects of climate change on plankton community structure, Ecol. Evol. 10, 2170-2181.
- 53. Prakash, P., Prakash, S., Rahaman, H., Ravichandran, M., Nayak, S., 2012. Is the trend in chlorophyll-a in the Arabian Sea decreasing?, Geophys. Res. Lett. 39.
- 54. Prakash, S., Ramesh, R., 2007. Is the Arabian Sea getting more productive?, Curr. Sci. 667-671.
- 55. Pramanik, S., Sil, S., Gangopadhyay, A., Singh, M.K., Behera, N., 2020. Interannual variability of the Chlorophyll a concentration over Sri Lankan Dome in the Bay of Bengal, Int. J. Remote Sens. 41, 5974-5991.
- 56. Prasad, T.G., 2004. A comparison of mixed-layer dynamics between the Arabian Sea and Bay of Bengal: Onedimensional model results, J. Geophys. Res.-Oceans 109. https://doi.org/10.1029/2003JC002000
- 57. Prasanna Kumar, S., Madhupratap, M., Kumar, M.D., Gauns, M., Muraleedharan, P.M., Sarma, V., De Souza, S.N., 2000. Physical control of primary productivity on a seasonal scale in central and eastern Arabian Sea, J. Earth Syst. Sci. 109, 433-441.
- 58. Prasanna Kumar, S., Muraleedharan, P.M., Prasad, T.G., Gauns, M., Ramaiah, N., De Souza, S.N., Sardesai, S., Madhupratap, M., 2002. Why is the Bay of Bengal less productive during summer monsoon compared to the Arabian Sea?, Geophys. Res. Lett. 29, 88-1-88-4.
- 59. Prasanna Kumar, S., Narvekar, J., Nuncio, M., Kumar, A., Ramaiah, N., Sardessai, S., Gauns, M., Fernandes, V., Paul, J., 2010. Is the biological productivity in the Bay of Bengal light limited?, Curr. Sci. 98, 1331-1339.
- 60. Prasanna Kumar, S., Nuncio, M., Narvekar, J., Kumar, A., Sardesai, S., De Souza, S.N., Gauns, M., Ramaiah, N., Madhupratap, M., 2004. Are eddies nature’s trigger to enhance biological productivity in the Bay of Bengal?, Geophys. Res. Lett. 31.
- 61. Prasanna Kumar, S., Ramaiah, N., Gauns, M., Sarma, V., Muraleedharan, P.M., Raghukumar, S., Kumar, M.D., Madhupratap, M., 2001. Physical forcing of biological productivity in the Northern Arabian Sea during the Northeast Monsoon, Deep Sea Res. Pt. II 48, 1115-1126.
- 62. Ravichandran, M., Girishkumar, M.S., Riser, S., 2012. Observed variability of chlorophyll-a using Argo profiling floats in the southeastern Arabian Sea, Deep-Sea Res. Pt. I 65, 15-25.
- 63. Raymont, J.E.G., 2014. Plankton & productivity in the oceans. Volume 1: Phytoplankton, Elsevier, 660 pp.
- 64. Resplandy, L., Levy, M., Madec, G., Pous, S., Aumont, O., Kumar, D., 2011. Contribution of mesoscale processes to nutrient budgets in the Arabian Sea, J. Geophys. Res.- Oceans 116.
- 65. Rhein, M., Rintoul, S.R., Aoki, S., Campos, E., Chambers, D., Feely, R.A., Gulev, S., Johnson, G.C., Josey, S.A., Kostianoy, A., 2013. Observations: Ocean, Cambridge University Press, Cambridge, UK, New York, USA.
- 66. Rousseaux, C.S., Gregg, W.W., 2012. Climate variability and phytoplankton composition in the Pacific Ocean, J. Geophys. Res.-Oceans 117. https://doi.org/10.1029/2012JC008083
- 67. Roxy, M.K., Modi, A., Murtugudde, R., Valsala, V., Panickal, S., Prasanna Kumar, S., Ravichandran, M., Vichi, M., Levy,M., 2016. A reduction in marine primary productivity driven by rapid warming over the tropical Indian Ocean, Geophys. Res. Lett. 43, 826-833.
- 68. Roxy, M.K., Ritika, K., Terray, P., Masson, S., 2014. The curious case of Indian Ocean warming, J. Clim. 27, 8501-8509.
- 69. Sarma, V., Rao, G.D., Viswanadham, R., Sherin, C.K., Salisbury, J., Omand, M.M., Mahadevan, A., Murty, V.S.N., Shroyer, E.L., Baumgartner, M., 2016. Effects of freshwater stratification on nutrients, dissolved oxygen, and phytoplankton in the Bay of Bengal, Oceanography 29, 222-231.
- 70. Sarma, V.V.S.S., Rajula, G.R., Durgadevi, D.S.L., Kumar, G.S., Loganathan, J., 2020. Influence of eddies on phytoplankton composition in the Bay of Bengal, Cont. Shelf Res. 208, 104241. https://doi.org/10.1016/j.csr.2020.104241
- 71. Sarma, V.V.S.S., Rao, D.N., Rajula, G.R., Dalabehera, H.B., Yadav, K., 2019. Organic Nutrients Support High Primary Production in the Bay of Bengal, Geophys. Res. Lett. 46, 6706-6715. https://doi.org/10.1029/2019GL082262
- 72. Sarmiento, J.L., Slater, R., Barber, R., Bopp, L., Doney, S.C., Hirst, A.C., Kleypas, J., Matear, R., Mikolajewicz, U., Monfray, P., 2004. Response of ocean ecosystems to climate warming, Glob. Biogeochem. Cy. 18.
- 73. Schaum, C.E., Barton, S., Bestion, E., Buckling, A., Garcia- Carreras, B., Lopez, P., Lowe, C., Pawar, S., Smirnoff, N., Trimmer, M., 2017. Adaptation of phytoplankton to a decade of experimental warming linked to increased photosynthesis, Nat. Ecol. Evol. 1, 1-7.
- 74. Shankar, D., Vinayachandran, P.N., Unnikrishnan, A.S., 2002. The monsoon currents in the north Indian Ocean, Prog. Oceanogr. 52, 63-120.
- 75. Shetye, S.R., Shenoi, S.S.C., Gouveia, A.D., Michael, G.S., Sundar, D., Nampoothiri, G., 1991. Wind-driven coastal upwelling along the western boundary of the Bay of Bengal during the southwest monsoon, Cont. Shelf Res. 11, 1397-1408.
- 76. Singh, G.P., Oh, J., 2007. Impact of Indian Ocean sea-surface temperature anomaly on Indian summer monsoon precipitation using a regional climate model, Int. J. Climatol. RMetS 27, 1455-1465.
- 77. Subramanian, V., 1993. Sediment load of Indian rivers, Curr. Sci. 64, 928-930.
- 78. Thomas, M.K., Kremer, C.T., Klausmeier, C.A., Litchman, E., 2012. A global pattern of thermal adaptation in marine phytoplankton, Science 338, 1085-1088.
- 79. Thompson, B., Gnanaseelan, C., Parekh, A., Salvekar, P.S., 2008. North Indian Ocean warming and sea level rise in an OGCM, J. Earth Syst. Sci. 117, 169-178.
- 80. Thushara, V., Vinayachandran, P.N.M., Matthews, A.J., Webber, B.G.M., Queste, B.Y., 2019. Vertical distribution of chlorophyll in dynamically distinct regions of the southern Bay of Bengal, Biogeosciences 16, 1447-1468.
- 81. van Leeuwen, S.M., van der Molen, J., Ruardij, P., Fernand, L., Jickells, T., 2013. Modelling the contribution of deep chlorophyll maxima to annual primary production in the North Sea, Biogeochemistry 113, 137-152.
- 82. Venrick, E.L., McGowan, J.A., Cayan, D.R., Hayward, T.L., 1987. Climate and chlorophyll a: long-term trends in the central North Pacific Ocean, Science 238, 70-72.
- 83. Vinayachandran, P.N., 2009. Impact of physical processes on chlorophyll distribution in the Bay of Bengal, Indian Ocean Biogeochem. Process. Ecol. Var. - Geophys. Monogr. 71-86.
- 84. Vinayachandran, P.N., Kurian, J., 2007. Hydrographic observations and model simulation of the Bay of Bengal freshwater plume, Deep-Sea Res. Part Oceanogr. Res. Pap. 54, 471-486.
- 85. Wiggert, J.D., Hood, R.R., Banse, K., Kindle, J.C., 2005. Monsoondriven biogeochemical processes in the Arabian Sea, Prog. Oceanogr. 65, 176-213. https://doi.org/10.1016/j.pocean.2005.03.008
- 86. Wollrab, S., Izmestyeva, L., Hampton, S.E., Silow, E.A., Litchman, E., Klausmeier, C.A., 2021. Climate Change-Driven Regime Shifts in a Planktonic Food Web, Am. Nat. 197, 281-295.
- 87. Xu, Y., Wu, Y., Wang, H., Zhang, Z., Li, J., Zhang, J., 2021. Seasonal and interannual variabilities of chlorophyll across the eastern equatorial Indian Ocean and Bay of Bengal, Prog. Oceanogr. 198, 102661.
- 88. Yadav, K., Sarma, V., Rao, D.B., Kumar, M.D., 2016. Influence of atmospheric dry deposition of inorganic nutrients on phytoplankton biomass in the coastal Bay of Bengal, Mar. Chem. 187, 25-34.
- 89. Yang, J., Gong, P., Fu, R., Zhang, M., Chen, J., Liang, S., Xu, B., Shi, J., Dickinson, R., 2013. The role of satellite remote sensing in climate change studies, Nat. Clim. Change 3, 875-883.
- 90. Zlotnik, I., Dubinsky, Z., 1989. The effect of light and temperature on DOC excretion by phytoplankton, Limnol. Oceanogr. 34, 831-839.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-99b86c5e-4912-48e9-a02c-d8d1bbcf8d1a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.