PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Fractional stochastic differential equations driven by G-Brownian motion with delays

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper consists of two parts. In part I, existence and uniqueness of solution for fractional stochastic differential equations driven by G-Brownian motion with delays (G-FSDEs for short) is established. In part II, the averaging principle for this type of equations is given. We prove under some assumptions that the solution of G-FSDE can be approximated by solution of its averaged stochastic system in the sense of mean square.
Rocznik
Strony
1--21
Opis fizyczny
Bibliogr. 16 poz.
Twórcy
autor
  • LaPS Laboratory, Badji-Mokhtar University, PO Box 12, Annaba 23000, Algeria
autor
  • LaPS Laboratory, Badji-Mokhtar University, PO Box 12, Annaba 23000, Algeria
  • LaPS Laboratory, Badji-Mokhtar University, PO Box 12, Annaba 23000, Algeria
autor
  • Institute of Mathematics The Free University of Berlin
Bibliografia
  • 1] H. M. Ahmed and Q. Zhu, The averaging principle of Hilfer fractional stochastic delay differential equations with Poisson jumps, Appl. Math. Lett. 112 (2021), art. 106755, 7 pp.
  • [2] H. Bao and J. Cao, Existence of solutions for fractional stochastic impulsive neutral functional differential equations with infinite delay, Adv. Difference Equations 2017, art. 66, 14 pp.
  • [3] A. Chadha and D. N. Pandey, Existence results for an impulsive neutral stochastic fractional integro-differential equation with infinite delay, Nonlinear Anal. 128 (2015), 149-175.
  • [4] J. Cui and L. Yan, Existence result for fractional neutral stochastic integro-differential equations with infinite delay, J. Phys. 44 (2011), art. 335201, 16 pp.
  • [5] L. Denis and C. Martini, A theoretical framework for the pricing of contingent claims in the presence of model uncertainty, Ann. Appl. Probab. 16 (2006), 827-852.
  • [6] M. Hu and S. Peng, On representation theorem of G-expectations and paths of G-Brownian motion, Acta Math. Appl. Sin. Engl. Ser. 25, (2009), 539-546.
  • [7] W. Mao, B. Chen and S. You, On averaging principle for SDEs driven by G-Brownian motion with non-Lipschitz coefficients, Adv. Difference Equations 2021, art. 71, 16 pp.
  • [8] B. P. Moghaddam, L. Zhang, A. M. Lopes, J. A. Tenreiro Machado and Z. S. Mostaghim. Sufficient conditions for existence and uniqueness of fractional stochastic delay differentia equations, Stochastics 92 (2020), 379-396.
  • [9] S. Peng, G-expectation, G-Brownian motion and related stochastic calculus of Itˆo type, in: Stochastic Analysis and Applications, Proc. 2nd Abel Symposium, Springer, Berlin, 2006, 541-567.
  • [10] S. Peng, G-Brownian motion and dynamic risk measure under volatility uncertainty, arXiv:0711.2834 ) (2007).
  • [11] S. Peng. Nonlinear Expectations and Stochastic Calculus under Uncertainty - with Robust CLT and G-Brownian Motion, Springer, 2019.
  • [12] P. Umamaheswaria, K. Balachandrana and N. Annapoorani, Existence and stability results for caputo fractional stochastic differential equations with L´evy noise, Filomat 34 (2020), 1739-1751.
  • [13] Wenjing Xu, J. Duan and Wei Xu, An averaging principle for fractional stochastic differentia equation with L´evy noise, Chaos 30 (2020), art. 083126, 7 pp.
  • [14] Wenjing Xu, Wei Xu and S. Zhang, The averaging principle for stochastic differential equation with Caputo fractional derivative, Appl. Math. Lett. 93 (2019), 79-84.
  • [15] H. Ye, J. Gao and Y. Ding, A generalized Gronwall inequality and its application to a fractional differential equation, J. Math. Anal. Appl., 328 (2007), 1075-1081.
  • [16] X. Zhang, P. Agarwal, Z. Liu, H. Peng, F. You and Y. Zhu, Existence and uniqueness of solutions for stochastic differential equations of fractional-order q > 1with finite delays, Adv. Difference Equations 2017, art. 123, 18 pp.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-99b6f4c4-ef88-4fa3-88db-6fe2309de8f8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.