PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Habitat Preference Within Its Native Range and Allelopathy of Garlic Mustard Alliaria petiolate

Autorzy
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Even though Alliaria petiolata is a globally important invasive plant, for Europe it is a native humble understory species. I studied the population characteristics of A. petiolata in its native range (NE Slovenia) by evaluating its demographic structure (e.g. population size, density, plant fruit production) and herbivory damage in different habitats (forest understorey, forest edge, ruderal site). Moreover I tested the allelopathic potential of fresh A. petiolata leaves and roots on garden cress Lepidium sativum germination and seedling development. I performed bioassays with aqueous extracts and took a first step toward testing the presence of volatile potentially allelopathic compounds. The results showed that A. petiolata populations can become established at disturbed sites, even such without a tree canopy, but dense stands can be found only at disturbed forest edges. The bioassays confirmed the presence of A. petiolata aqueous and volatile allelochemicals in leaves and roots. Germination was suppressed more by volatiles, showing that allelopathy can act via volatile compounds and further suggesting their antifungal effects. The results allow predicting that the success of A. petiolata invasion in a non-native range might rely on its variable habitat tolerance (not being a strict ruderal species) and allelopathy.
Rocznik
Strony
46--56
Opis fizyczny
Bibliogr. 41 poz., rys., tab., wykr.
Twórcy
autor
  • Department of Biology, Faculty of Natural Sciences and Mathematics, University of Maribor, Koroška c. 160, SI-2000 Maribor, Slovenia
Bibliografia
  • [1] Bais H. P., Vepachedu R., Gilroy S., Callaway R. M., Vivanco J. M. 2003 — Allelopathy and exotic plant invasion: From molecules and genes to species interactions — Science, 301: 1377–1380.
  • [2] Baker H. G. 1965 — Characteristics and modes of origin of weeds (In: The genetics of colonizing species, Eds: H. G. Baker, G. L. Stebbins) — NY Academic Press, New York, pp. 147–168.
  • [3] Barto E. K., Antunes P. M., Stinson K., Koch A. M., Klironomos J. N., Cipollini D. 2011 — Differences in arbuscular mycorrhizal fungal communities associated with sugar maple seedlings in and outside of invaded garlic mustard forest patches — Biol. Invasions, 13: 2755–2762.
  • [4] Barto E. K., Cipollini D. 2009 — Half-lives and field soil concentrations of Alliaria petiolata secondary metabolites — Chemosphere, 76: 71–75.
  • [5] Barto E. K., Powell J. R., Cipollini D. 2010 — How novel are the chemical weapons of garlic mustard in North American forest understories? — Biol. Invasions, 12: 3465–3471.
  • [6] Blair A. C., Leslie A., Weston L. A., Nissen S. J., Brunk G. R., Hufbauer R. A. 2009 — The importance of analytical techniques in allelopathy studies with the reported allelochemical catechin as an example — Biol. Invasions, 11: 325–332.
  • [7] Bossdorf O., Prati D., Auge H., Schmid B. 2004 — Reduced competitive ability in an invasive plant — Ecol. Lett. 7: 346–353.
  • [8] Callaway R. M., Aschehoug E. T. 2000 — Invasive plants versus their new and old neighbors: A mechanism for exotic invasion — Science, 290: 521–523.
  • [9] Cameron E. K., Bayne E. M. 2012 — Invasion by a non-native ecosystem engineer alters distribution of a native predator — Divers. Distrib. 18: 1190–1198.
  • [10] Cantor A., Hale A., Aaron J., Traw M. B., Kalisz S. 2011 — Low allelochemical concentrations detected in garlic mustard-invaded forest soils inhibit fungal growth and AMF spore germination — Biol. Invasions, 13: 3015–3025.
  • [11] Chmura D., Nejfeld P., Borowska M., Wozniak G., Nowak T., Tokarska-Guzik B. 2013 — The importance of land use type in Fallopia (Reynoutria) japonica invasion in the urban environment — Pol. J. Ecol. 61: 379–384.
  • [12] Cipollini K. A., McClain G. Y., Cipollini D. 2008 — Separating effects of allelopathy and shading by Alliaria petiolata and Lonicera maackii on growth, reproduction and survival of Impatiens capensis — Am. Midl. Nat. 160: 117–128.
  • [13] Colautti R. I., Franks S. J., Hufbauer R. A., Kotanen P., Torchin M., Byers J. E., Pyšek P., Bossdorf O. 2014 — The global garlic mustard field survey: challenges and opportunities of a unique, large-scale collaboration for invasion biology — NeoBiota, 21: 29–47.
  • [14] Colautti R. I., Ricciardi A., Grigorovich I. A., MacIsaac H. 2004 — Is invasion success explained by the enemy release hypothesis? — Ecol. Lett. 7: 721–733.
  • [15] Davis M. A., Colehour A., Daney J., Foster E., Macmillen C., Merrill E., O'Neil J., Pearson M., Whitney M., Anderson M. D., Dosch J. J. 2012 — The population dynamics and ecological effects of garlic mustard, Alliaria petiolata, in a Minnesota Oak Woodland — Am. Midl. Nat. 168: 364–374.
  • [16] Gehringer M. M., Kewada V., Coates N., Downing T. G. 2003 — The use of Lepidium sativum in a plant bioassay system for the detection of microcystin LR — Toxicon, 41: 871–876.
  • [17] Hale A., Lapointe L., Kalisz S. 2016 — Invader disruption of belowground plant mutualisms reduces carbon acquisition and alters allocation patterns in a native forest herb — New Phytol. 209: 542–549.
  • [18] Haribal M., Renwick J. A. A. 2001 — Seasonal and population variation in flavonoid and alliarinoside content of Alliaria petiolata — J. Chem. Ecol. 27: 1585–1594.
  • [19] Hinz H. L., Gerber E. 2000 — Investigations on potential biological control agents of garlic mustard, Alliaria petiolata (Bieb.) Cavara & Grande — Annual Report 1999, CABI Bioscience Centre Switzerland, Delemont, Switzerland.
  • [20] Kaligarič M., Meister M., Škornik S., Šajna N., Kramberger B., Bolhàr-Nordenkampf H. R. 2011 — Grassland succession is mediated by umbelliferous colonizers showing allelopathic potential — Plant. Biosyst. 145: 688–698.
  • [21] Keane R. M., Crawley M. J. 2002 — Exotic plant invasions and the enemy release hypothesis — Trends Ecol. Evol. 17: 164–170.
  • [22] Lewis K. C., Bazzaz F. A., Liao Q., Orians C. M. 2006 — Geographic patterns of herbivory and resource allocation to defense, growth, and reproduction in an invasive biennial, Alliaria petiolata — Oecologia, 148: 384–95.
  • [23] Macias F. A., Castellano D., Molinillo J. M. G., 2000 — In the search for a standard bioassay for allelopathic studies of phytotoxicity. Selection of standard target species (STS) — J. Agr. Food Chem. 48: 2512–2521.
  • [24] Macias F., Varela R. M., Torres A., Galindo J. L. G., Molinilo J. M. G. 2002 — Allelochemials from sunflowers: chemistry, bioactivity and applications (In: Chemical Ecology of Plants: Allelopathy in Aquatic and Terrestrial Ecosystems, Eds: A. U. Inderjit, A. U. Mallik) — Birkhauser Verlag, Basel, pp. 73–87.
  • [25] McCarthy B. C., Hanson S.L. 1998 — An assessment of the allelopathic potential of the invasive weed Alliaria petiolata (Brassicaceae) — Castanea, 63: 68–73.
  • [26] Meiners S. J. 2014 — Functional correlates of allelopathic potential in a successional plant community — Plant Ecology, 215: 661–672.
  • [27] Mitchell C. E., Power A.G. 2003 — Release of invasive plants from fungal and viral pathogens — Nature, 421: 625–627.
  • [28] Myśliwy M. 2014 — Habitat preferences of some neophytes, with a reference to habitat disturbance — Pol. J. Ecol. 62: 511–526.
  • [29] Nuzzo V. 1993 — Current and historic distribution of garlic mustard (Alliaria petiolata) in Illinois — Mich. Bot. 32: 23–33.
  • [30] Nuzzo V. 2000 — Element stewardship abstract for Alliaria petiolata (Alliaria officinalis), garlic mustard (report) — The Nature Conservancy, Arlington.
  • [31] Pisula N. L., Meiners S. J. 2010 — Relative allelopathic potential of invasive plant species in a young disturbed woodland — J. Torrey. Bot. Soc. 137: 81–87.
  • [32] Prati D., Bossdorf O. 2004 — Allelopathic inhibition of germination by Alliaria petiolata (Brassicaceae) — Am. J. Bot. 91: 285–288.
  • [33] Rebek K. A., O'Neil R. J. 2006 — The effects of natural and manipulated density regimes on Alliaria petiolata survival, growth and reproduction — Weed Res. 46: 345–352.
  • [34] Ridenour W. M., Callaway R. M. 2001 — The relative importance of allelopathy in interference: The effects of an invasive weed on a native bunchgrass — Oecologia, 126: 444–450.
  • [35] Rodgers V. L., Wolfe B. E., Werden L. K., Finzi A. C. 2008 — The invasive species Alliaria petiolata (garlic mustard) increases soil nutrient availability in northern hardwoodconifer forests — Oecologia, 157: 459–471.
  • [36] Siegel S., Castellan N. J. 1988 — Nonparametric statistics for the behavioral sciences, second edition — McGraw-Hill, New York.
  • [37] Stinson K. A., Campbell S. A., Powell J. R., Wolfe B. E., Callaway R. M., Thelen G. C., Hallett S. G., Prati D., Klironomos J. N. 2006 — Invasive plant suppresses the growth of native tree seedlings by disrupting belowground mutualisms — PLoS Biology, 4: 727–731.
  • [38] Stinson K., Kaufman S., Durbin L., Lowenstein F. 2007 — Impacts of garlic mustard invasion on a forest understory community — Northeast. Nat. 14: 73–88.
  • [39] Vaughn S. F., Berhow M. A. 1999 — Allelochemicals isolated from tissues of the invasive weed garlic mustard — J. Chem. Ecol. 25: 2495–2504.
  • [40] Webb C. J., Sykes W. R., Garnock-Jones P. J. 1988 — Flora of New Zealand, vol. 4: Naturalised Pteridophytes, Gymnosperms, Dicotyledons — Department of Scientific and Industrial Research Christchurch.
  • [41] Williamson G. B., Richardson D. 1988 — Bioassays for allelopathy: measuring treatment responses with independent controls — J. Chem. Ecol. 14: 181–188.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-99b62fda-6768-490b-8acf-771ca09381a4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.