PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Optimization of window size design for detached house using TRNSYS simulations and genetic algorithm

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Heat gains from the sun affect the heat balance of building by reducing the energy demand at certain periods of the year and increasing it at others. Windows, especially the type of glazing, are a determining factor in the successful use of solar gains. The aim of the research presented in the paper is to analyse the effects of the type and size of windows on annual heating and cooling energy consumption considering the energy costs in Polish climate conditions. Additionally the influence of building orientation has been analysed. Optimal selection of these parameters for reduction of the energy consumption has been carried out. Genetic algorithms were used for the optimization, while TRNSYS program was used for energy analysis. The analyses were performed on an exemplary single family detached house. Self-adaptive genetic algorithm connected with energy building simulation successfully identifies the lowest energy costs. Optimal window type and size design and window orientation reduce the energy costs. The developed comprehensive energy simulation environment can also be used to optimize other building’s parameters.
PL
Zyski ciepła od słońca wpływają na bilans cieplny budynku, zmniejszając jego zapotrzebowanie na energię w pewnych okresach roku i zwiększając ją w innych. Okna, a szczególnie rodzaj zastosowanego oszklenia są determinującym czynnikiem wpływającym na skuteczne wykorzystanie zysków od nasłonecznienia. Celem badań zaprezentowanych w artykule było przeanalizowanie wpływu typu i wielkości okien na roczne zapotrzebowanie na ciepło i chłód w odniesieniu do kosztów energii w polskich warunkach klimatycznych. Dodatkowo analizowane było usytuowanie budynku względem stron świata. Do optymalizacji wykorzystano algorytmy genetyczne, a do symulacji zapotrzebowania na ciepło i chłód zastosowano program TRNSYS. Analizy przeprowadzono dla przykładowego domu jednorodzinnego. Samoadaptacyjna metoda algorytmów genetycznych w połączeniu z energetyczną symulacją budynku skutecznie identyfikuje najmniejsze koszty energii. Optymalny dobór typu i wielkości okien i ich rozmieszczenie względem stron świata ogranicza koszty energii. Opracowane pełne środowisko symulacyjne może być wykorzystane do optymalizacji również innych parametrów budynku.
Rocznik
Strony
133--140
Opis fizyczny
Bibliogr. 38 poz.
Twórcy
  • Faculty of Energy and Environmental Engineering, The Silesian University of Technology, Konarskiego 18, 44-100 Gliwice, Poland
autor
  • Faculty of Civil Engineering, The Silesian University of Technology, Akademicka 5, 44-100 Gliwice, Poland
Bibliografia
  • [1] Hasan, A., Vuolle, M., Siren, K. (2008). Minimisation of life cycle cost of a detached house using combined simulation and optimization. Building and Environment, 43, 2022-2034.
  • [2] Ascione, F., Bellia, L., Capozzoli, A., Minichiello, F. (2009). Energy saving strategies in air-conditioning for museums. Applied Thermal Engineering, 29, 676-686.
  • [3] Ferdyn-Grygierek, J., Baranowski, A. (2009). Energy-saving solutions for the cooling of the office buildings. Rynek Energii, 1, 46-52.
  • [4] Baranowski, A., Ferdyn-Grygierek, J. (2011). Numerical analysis of the energy consumption in the office building. Rynek Energii, 2, 171-175.
  • [5] Ferdyn-Grygierek, J. (2014). Indoor environment quality in the museum building and its effect on heating and cooling demand. Energy and Buildings, 85, 32-44.
  • [6] Ferdyn-Grygierek, J., Baranowski, A. (2015). Internal environment in the museum building Assessment and improvement of air exchange and its impact on energy demand for heating. Energy and Buildings, 92, 45-54.
  • [7] Ferdyn-Grygierek, J., Baranowski, A. (2016). Cooling demand in museum premises - numerical prediction and measurement validation. Architecture Civil Engineering Environment, 9(2), 125-135.
  • [8] Znouda, E., Ghrab-Morcos, N., Hadj-Alouane, A. (2007). Optimization of Mediterranean building design using genetic algorithms. Energy and Buildings, 39, 148-153.
  • [9] Goldberg, D. E. (1995). Algorytmy genetyczne i ich zastosowania (Genetic algorithms and their applications). Wydawnictwo Naukowo-Techniczne. Warszawa.
  • [10] Liu, Y., Dong, H., Lohse, N., Petrovic, S. (2016). A multi-objective genetic algorithm for optimisation of energy consumption and shop floor production performance. International Journal of Production Economics, 179, 259-272.
  • [11] Yang, C., Li H., Rezgui, Y., Petri, I., Yuce, B., Chen, B., Jayan B. (2014). High throughput computing based distributed genetic algorithm for building energy consumption optimization. Energy and Buildings, 76, 92-101.
  • [12] Lu, Y., Shengwei, W., Yang, Z., Chengchu, Y. (2015). Renewable energy system optimization of low/zero energy buildings using single-objective and multiobjective optimization methods. Energy and Buildings, 89, 61-75.
  • [13] Čongradac, V., Kulić, F. (2012). Recognition of the importance of using artificial neural networks and genetic algorithms to optimize chiller operation. Energy and Buildings, 47, 651-658.
  • [14] Mossolly, M., Ghali, K., Ghaddar, N. (2009). Optimal control strategy for a multi-zone air conditioning system using a genetic algorithm. Energy, 34, 58-66.
  • [15] Bichiou, Y., Krarti, M. (2011). Optimization of envelope and HVAC systems selection for residential buildings. Energy and Buildings, 43(12), 3373-3382.
  • [16] Tuhus-Dubrow, D., Krarti, M. (2010). Genetic-algorithm based approach to optimize building envelope design for residential buildings. Building and Environment, 45, 1574-1581.
  • [17] Magnier, L., Haghighat, F. (2010). Multiobjective optimization of building design using TRNSYS simulations, genetic algorithm and Artificial Neural Network. Building and Environment, 45, 739-746.
  • [18] Król, M., Białecki, R. (2003). Optimization of a window frame by BEM and genetic algorithm. Int. J. Numer. Methods Heat Fluid Flow, 13(5/6), 565-580.
  • [19] Saari, A., Kalamees, T., Jokisalo, J., Michelsson, R., Alanne, K., Kurnitski, J. (2012). Financial viability of energy-efficiency measures in a new detached house design in Finland. Applied Energy, 92, 76-83.
  • [20] Gasparella, A., Pernigotto, G., Cappelletti, F., Romagnoni, P., Baggio, P. (2011). Analysis and modelling of window and glazing systems energy performance for a well insulated residential building. Energy and Buildings, 43, 1030-1037.
  • [21] Menzies, G.F., Wherrett, J.R. (2005). Windows in the workplace: examining issues of environmental sustainability and occupant comfort in the selection of multi-glazed windows. Energy and Buildings, 37(6), 623-630.
  • [22] Ruiz, M.C., Romero, E. (2011). Energy saving in the conventional design of a Spanish house using thermal simulation. Energy and Buildings, 43, 3226-3235.
  • [23] Filippın, C., Flores, Larsen, S., Lopez, Gay, E. (2008). Energy improvement of a conventional dwelling in Argentina through thermal simulation. Renewable Energy, 33, 2246-2257.
  • [24] Cheung, C.K., Fuller, R.J., Luther, M.B. (2005). Energy-efficient envelope design for high-rise apartments. Energy and Buildings, 37, 37-48.
  • [25] Yu, J., Yang, C., Tian, L. (2008). Low-energy envelope design of residential building in hot summer and cold winter zone in China. Energy and Buildings, 40, 1536-1546.
  • [26] Kapsalaki, M., Leal, V., Santamouris, M. (2012). A methodology for economic efficient design of Net Zero Energy Buildings. Energy and Buildings, 55, 765-778.
  • [27] Jaber, S., Ajib, S. (2011). Thermal and economic windows design for different climate zones. Energy and Buildings, 43, 3208-3215.
  • [28] Stolarski, M. J., Krzyżaniak, M., Warmiński, K., Niksa, D. (2016). Energy consumption and costs of heating a detached house with wood briquettes in comparison to other fuels. Energy Conversion and Management, 121, 71-83.
  • [29] Rozporządzenie Ministra Infrastruktury z dnia 12 kwietnia 2002 r. w sprawie warunków technicznych, jakim powinny odpowiadać budynki i ich usytuowanie (Dz.U. 2002 nr 75 poz. 690 ze zm.). (Regulation of the Minister of Infrastructure of 12 April 2002 on the technical conditions that should be met by buildings and their location (Journal of Laws of the Republic of Poland No 75, with recast)).
  • [30] Klein, S. A., Beckman, W. A., Mitchell, J. W., Duffie, J. A., Duffie, N. A., Freeman, T. L., Mitchell, J. C., et al. (2010). TRNSYS 17 A transient system simulation program. U. of W.-M. Solar Energy Laboratory, Ed.
  • [31] Grygierek, K. (2014). Samoadaptacyjna metoda algorytmów genetycznych w optymalizacji przestrzennych kratownic (Self-adaptive method of genetic algorithm in optimization of spatial truss structures). Modelowanie Inżynierskie, 21(52), 80-86.
  • [32] Grygierek, K. (2016). Optimization of trusses with self-adaptive approach in genetic algorithms. Architecture Civil Engineering Environment, 9(4), 67-78.
  • [33] Ferdyn-Grygierek, J., Grygierek, K. (2017). Multivariable optimization of building thermal design using genetic algorithms. Energies, 10(10), 1570.
  • [34] Pełech, A. (2008). Wentylacja i klimatyzacja - podstawy. (Ventilation and air conditioning - fundamentals). Oficyna Politechniki Wrocławskiej. Wrocław.
  • [35] Recknagel, H., Schramek, E.-R. (2008). Kompendium wiedzy. Ogrzewnictwo, klimatyzacja, ciepła woda, chłodnictwo. (Handbook. Heating, air conditioning, domestic hot water, refrigerator technology) Omni Scala. Wrocław.
  • [36] EnergyPlus weather file website address; https://energyplus.net/weather-location/europewmo region6/POL//POLKatowice.125600IMGW.
  • [37] ESRU Manual U02/1. (2002). The ESP-r system for building energy simulation. User Guide Version 10 Series. University of Strathclyde Energy Systems Research Unit. Glasgow.
  • [38] Baranowski, A., Ferdyn-Grygierek, J. (2009). Heat demand and air exchange in a multifamily building - simulation with elements of validation. Building Services Engineering Research & Technology, 30(3), 227-240.
Uwagi
PL
Opracowanie w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-99b5182b-795f-4cc9-9433-e045aaf461b2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.