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abstRact
We consider the problem of using real-time floating car data to construct vehicle travel time prediction models 
meant to be used as input to routing algorithms for finding the fastest (time-shortest) path in the traffic network. 
More specifically we target the on-line car navigation systems. The travel time estimates for such a system need 
to be computed efficiently and provided for all short segments (links) of the roads network. We compare several 
fast real-time methods such as last observation, moving average and exponential smoothing, each combined 
with a historical traffic pattern model. Through a series of large-scale experiments on real-world data we show 
that the described approach yields promising results and conclude that specific prediction function form may 
be less important than a proper control of bias-variance trade-off (achieved by historical and real-time models 
combination). In addition, we consider two different settings for testing the prediction quality of the models. 
The first setting concerns measuring the prediction error on short road segments, while the second on longer 
paths through the traffic network. We show the quality and model parameters vary depending on the assessment 
method.
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1. Introduction
Travel time estimation and prediction is a fundamental 

and important part of many traffic-related systems, but it can 
take many different forms depending on the available data or 
desired application. In this paper, we focus on constructing 
travel time prediction models for routing, or more specifically 
for online personal car navigation systems that aim to find 
the fastest (time-shortest) path between any two points in 
the traffic network. The input to proposed models will also 
naturally consist of floating car data (FCD), i.e. the information 
originating from moving vehicles equipped with GPS devices 
(e.g. cars with personal navigation).

The structure of the above problem differs significantly from 
the traditional approaches to travel time estimation, where data is 

commonly provided by stationary sensors e.g. loop detectors [7] 
or similar [4]. Contrary to stationary sensors, the FCD does not 
need expensive infrastructure and can cover the whole roads 
network (as opposed to selected parts), but the observations 
are randomly and unevenly distributed in space and time, as a 
result this kind of data requires a largely different construction of 
models, even if the applied mathematical methods seem similar.

Moreover, the majority of the current research does not focus 
on the routing-compatible single road segments (sometimes 
called links) and the entire traffic network, instead researching 
e.g. single paths [7] or freeways [1, 6]. There are generally few 
papers targeting routing applications and FCD explicitly and 
even those usually don’t focus on the broad (both long-term 
and short-term) scope of prediction – e.g. in a recent paper 
targeting travel times for city logistics [3] only the long-term 
traffic patterns are considered.
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A variety of methods can be applied to the travel time prediction 
for routing. In our approach we analyse several methods of different 
complexity. The simplest model is based on the last observation. 
The two other more complex models are the moving average and 
exponential smoothing. These models can optionally be mixed with 
a historical (static) traffic patterns model (similar to [2] or [3]) to 
reduce the variance of the most recent observations and augment 
the long-term prediction. This approach can be similar to some 
other proposed solutions – e.g. a complex system [5] incorporating 
historical and real-time model, as well as expert rules and external 
event inputs. Another similar approach concerns supplementing 
time series models with historical data [8]. In relation to the above 
solutions we try to achieve similar goals with noncomplex models, 
naturally formulated for the continuous time domain (as opposed 
to discrete time series).

Our empirical study thoroughly tests all the methods on 
a large set real-world data (a traffic network of an entire city) 
and finds that the applied approach yields promising results. 
We additionally discuss the relation between prediction quality 
and the model complexity as well as the optional mixing with a 
historical traffic patterns model.

We also consider two different techniques of assessing the 
prediction quality. One technique concerns measuring the 
prediction error on short road segments (on which we predict), 
while the other uses longer paths through the traffic network 
(which is closer to the route planning application). We discuss 
the differences between them.

2. Problem statement
The task is to find a function , that accurately 

predicts an actual travel time  for each individual short 
road segment Ss∈  in a given time point +∈Rt , where +R  is the 
set of nonnegative reals. By this we want to model the travel times 
in the roads network on a high level of granularity. The accuracy 
of a single prediction ŷ , having a true value y, is measured by the 
squared error loss 2)ˆ()ˆ,( yyyyL −= , and for the purpose of model 
evaluation, this loss is preferably measured on longer vehicle paths 
than on short road network segments.

3. Models
The predictions come from a composition of two models. 

The first one, a static model, predicts daily, weekly, and overall 
periodical trends in the traffic (e.g. “at every Tuesday morning, on 
a road segment in the city centre, the traffic is low”) using a large 
historical data set (several months of past data). This constitutes its 
strength (stability and long-term prediction), but also its weakness 
(no adaptation to current traffic conditions). Therefore, the static 
model is combined with a dynamic model, which exploits recent 
real-time observations. The dynamic model targets the short-term 
prediction by fitting to the current traffic situation (deviation from 
the static model), but it is unable to predict in the long term on its 
own, and can have a much higher variance.

3.1 Static model

For the purpose of this research we will use a simple base static 
model that will be denoted as ),( tsfb . Let us consider a model that 
divides the day into four general time periods: the morning rush, 
the midday, the afternoon rush and the night. Then, it predicts using 
mean travel time  computed for each road segment s and time 
period p over a set of historical data. This model is a simple ‘step 
function’ in the time domain for a particular segment. It is easy to 
compute, has a compact representation (only four travel times) and 
the prediction consists only of determining the correct time period. 
To obtain the final static model, having a more natural smooth 
transition between time periods, we additionally apply a tricube 
(fast, Gaussian-like) smoothing function.

The above model is one of many possible static models that 
could server as a stable base for the following dynamic models and 
it could be easily replaced by slightly different models serving the 
same purpose (e.g. [3] or [2]). There are even commercially sold  
equivalents, such as TomTom Speed Profiles or NAVTEQ Traffic 
Patterns. We will not discuss this model in much detail as part of 
this particular research.

3.2 Dynamic models

A dynamic model  depends only on the latest real-
time travel time observations  where n is 
number of latest observations for segment s. The set of recent 
observations in the time window of the length w from t0 can be 
defined as: .

Each dynamic model will also have two parameters (discussed 
in the next section) that can be tuned: either w or T, and a 
parameter λ  that can be optionally used to enable mixing with a 
base static model ),( tsfb .

The last observation model uses the latest observed travel 
time on a particular segment as the predicted value, which can 
be effective. e.g.. for a high congestion, where subsequent vehicles 
move with a similar low velocity. The model can be written as:

(1)

Additionally if ∅=
0swtY  the prediction falls back fully to the 

base static model ),( tsfb .
Since the last observation model predicts using a single 

observation and no averaging is involved, the variance of the 
prediction can be high. Therefore, the moving average model uses 
the mean of several latest observed travel times on a particular 
segment, thus reducing variance and potentially working better 
for more noisy cases – such as a traffic lights or lower data density.

The model can be written as:

(2)

The exponential smoothing model is usually defined recursively 
as a time series method, assuming that observations are available 
at regular time intervals. This cannot be applied directly when 
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dealing with floating car data incoming at random (often large) 
intervals or missing entirely. We thus use a version of exponential 
smoothing suited for the continuous time domain. Contrary to the 
moving average model, which uses a hard-threshold time window, 
the exponential smoothing method uses a weighted average of 
previous observations, with weights decaying at exponential rate. 
There is also a smooth exponential fallback effect. The model can 
be formally defined as:

(3)

where gi = exp(−(t0 − ti)  / T) and the time constant T determines 
the speed of decay. Using this exponential decay function is very 
advantageous in terms of memory consumption and computational 
time, as we can (similarly to the recursive version of the formula) 
easily reuse the previous predictions, only performing a few 
multiplications and additions when a new observation appears or 
a prediction is needed.

3.3 Parameters

The interpretation of the parameters is quite straightforward. 
The time window is a fairly basic concept and the time constant 
has a similar meaning. Whereas in the case of a time window, 
every observation in the window could be thought of as having 
the weight of 1, and every observation outside of the window as 
having the weight of 0, in the case of exponential decay, the weight 
of observations decreases from 1 (at current time) to 0.37 after 1T, 
0.14 after 2T, 0.05 after 3T and below 0.02 after 4T, reaching values 
close to 0 thereafter.

The parameter λ  allows for mixing (‘shrinking’) with a stable 
default prediction (static model) and can be thought of as the 
number (or a sum of weights) of artificial observations that are 
added in the formula of the models. This parameter serves to 
control the bias-variance trade-off of the short-term prediction.

We optimize the parameters globally, by performing a simple 
grid search, checking each pair of parameters from the domains: 

3.0} ..., 0.250, {0.125,∈T,w , , where the unit 
of T and w is hours. These ranges were determined using the 
parameters interpretation, as well as by preliminary experiments. 
We note, that all parameter tuning in done on training data in 
order to get unbiased results on the testing data.

4. Experiments
We use floating car data covering the city of Poznań, one of 

the major cities of Poland with about half a million population, 
with surroundings (covering the area of more than 400km2). The 
observations span is more than a month – from 12th May 2012 to 
16th June 2012. The data sample was provided by NaviExpert – an 
on-line personal car navigation company.

The input takes the form of travel time observations on individual 
short road segments at particular time instants. These observations 

originate from vehicles equipped with GPS, either through 
navigation or monitoring devices. The data has been preprocessed 
and cleaned by NaviExpert’s data processing algorithms (this 
includes map-matching and some outliers filtering). The roads map 
used in the experiments was the OpenStreetMap1 from May 2012.

In the experiments, the predictions were always evaluated 
on observations that had no chance to influence the models 
beforehand. We also assume a sensible latency TL  =  5  min, to 
avoid using observations that would not yet enter the system in 
reality, and a retention time TR = 6 hours for the real-time data: 

, where t0 is the current time.
The data was also divided into subsets, to ensure reliable results. 

The test set ranging form 10th May 2012 to 16th June 2012 was 
used for the final models evaluation, while the rest of the data (from 
9th May 2012 to 12th May 2012) was used as a learning set – to 
compute the historical traffic patterns and tune the parameters of 
the models.

Additionally, all of the data collected at late night hours – 
ranging from 11 p.m. to 4 a.m. are filtered out of the experiments, 
as potentially containing outliers. We also consider only the main 
roads of the city (skipping less important roads on the residential 
level) to better emphasize the cases where traffic congestion is 
possible and natural.

4.1 Results

The main results comparing the evaluated static and dynamic 
models can be seen in Table 1. The models are evaluated on 
observed vehicle paths (or parts thereof) – ranging from 0.5km 
to 5km, having an average length of about 2.8km. We constrain 
the maximum length of the vehicle paths to 5km by dividing them 
as needed, as we do not want to suffer from the variance resulting 
from severely different route lengths between vehicles. We use the 
root mean square error (rmse), as well as the mean absolute error 
(mae), which is less susceptible to outliers. The values are also 
accompanied (after the ± sign) by statistical standard error for the 
obtained error measure values.

We also use a simplest segment mean model as the reference for 
percentage error; this model  predicts using a constant historical 
mean travel value for each segment.

Table 1. Total errors for models

model T | w λ mae[min] mae[%] rmse[min] rmse[%]
segment 

mean 1.5762 ± .0074 100.00 2.6632 ± .0361 100.00

time 
periods 1.4545 ± .0071 92.28 2.5074 ± .0348 94.15

last 
observation 1.000 0 1.3971 ± .0063 88.63 2.3017 ± .0188 86.43

last 
observation 2.625 1.000 1.2653 ± .0058 80.28 2.0965 ± .0221 78.72

moving 
average 0.875 0 1.3367 ± .0061 84.81 2.2222 ± .0207 83.44

moving 
average 0.875 1.000 1.2539 ± .0058 79.55 2.0972 ± .0232 78.75

exp. 
smoothing 0.375 0 1.2788 ± .0061 81.13 2.1771 ± .0220 81.75

exp. 
smoothing 0.250 0.125 1.2378 ± .0057 78.53 2.0696 ± .0231 77.71

mean path length = 2.837[km]  number of vehicle paths = 83552

1 Available at http://www.openstreetmap.org/ under CC-BY-SA license, created by 
OpenStreetMap contributors
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The time periods model yields a considerable improvement 
over the simple segment mean, but the accuracy of short-term 
prediction is naturally limited by the lack of real-time input data.

The dynamic models with mixing parameter λ = 0 are purely 
real-time versions, not mixed with the static time periods model 
(falling back to the static segment mean only in the case of no real-
time observations). This shows that the mixing with time periods 
model (by setting λ  >  0) really improves the quality, and the 
improvement is most prominent for the simple last observation 
model. We also see that the exponential smoothing is the best 
amongst this group of models, both with and without the time 
periods model. Nevertheless, the differences between the three 
methods are not that large, when we allow for λ > 0 — especially 
in case of rmse and its standard error the differences seem 
statistically negligible. This suggests that the ability to control 
the bias-variance trade-off of the model by mixing with a stable 
default (static model) may be more important than the choice of a 
specific formula for dynamic short-term forecasting.

Next we consider two different techniques of assessing the 
prediction quality, both of which seem sensible for our problem.

The first assessment technique concerns measuring the 
prediction error on short road segments (or links). These 
segments are the main unit of the roads network. The direct 
routing-compatible prediction also takes place on each individual 
segment.

The second technique (the one also applied in Table 1) uses 
longer paths through the traffic network. These paths are closer 
to the route planning application, as the potential users of the 
prediction model will be interested in itineraries much longer 
than single road segments. In this case the predicted travel time 
value is the sum of predictions made on individual segments that 
a given path consists of.

Table 2 shows two versions of exponential smoothing model. 
The first version (T = 0. 25,  λ = 0. 125) has its parameters optimized 
for the longer paths case while the second version (T = 0. 5,  λ = 1) 
has parameters optimized with regards to the squared error on the 
short segments. We clearly see, that the optimal parameters can be 
very different — the case of longer paths calls for a more reactive 
and unbiased model, while the case of short segments requires a 
more conservative and less reactive approach.

Table 2. Short segments and longer paths comparison

short segments longer paths

d [km] count d [km] count

0.131 1836443 2.837 83552

model t λ rmse[min] rmse[%] rmse[min] rmse[%]

exp. 
smoothing 0.250 0.125 0.3458 ± .0024 91.79 2.0696 ± .0231 77.71

exp. 
smoothing 0.500 1.000 0.3362 ± .0026 89.26 2.1208 ± .0259 79.63

This shows that if we want a travel time prediction model 
to produce good prediction on longer paths, then we need to 
specifically optimize the error for these cases, even if we need to 

predict on the more granular level of a single segment. For our 
main results Table 1 we have chosen to optimize and evaluate the 
models for the longer paths case, as it seems closer to the ultimate 
goal of computing fastest paths in routing algorithms, but further 
research into the subject of a proper model quality assessment 
technique may be beneficial.

5. Conclusion
In this paper, we considered a problem of travel time prediction 

for an on-line personal car navigation system and other routing 
applications. We introduced solutions suited to FCD, that combine 
static and dynamic models. We also performed exhaustive large-
scale experiments on real-world data.

The experimental results have shown that simple and fast dynamic 
travel time prediction methods, applied on the level of single short 
road segments, can yield good results, especially when combined 
with a stable default such as the static traffic patterns model. It was 
also shown that it is important to choose the case for which we predict 
(e.g. longer paths or short road segments) and optimize the bias-
variance trade-off accordingly.

The work can be extended e.g. by individualizing the parameters 
of models for single segments and by complementing the models with 
more specialized methods for detecting unusual traffic incidents, 
falling outside of the scope of natural randomness and congestion. 
Further research into the proper model quality assessment technique 
may also be interesting.
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