PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Determination of the Vertical Distribution Pattern of Indoor Climate Parameters in the Greenhouse Heated in the Winter Period

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Ensuring the homogeneity of the indoor climate throughout the greenhouse is very important for uniform plant cultivation. In the study carried out to determine the indoor climate distribution in the heated greenhouse in the terrestrial climate, indoor temperature, relative humidity, dew point and vapour pressure deficit values were measured from 8 different measurement points. The distribution pattern of the measurement points was made horizontally and vertically at 2, 4 and 6 meters. Sensor placements are grouped vertically at 2 meters (G1: S1, S2 S3), at 4 meters (G2: S4, S5, S6) and at 6 meters (G3: S7, S8). Measurements taken during the day are divided into three parts. The climatic changes in the greenhouse were monitored as daily (00:00-23:30), daytime (08:30-17:30) and night (18:00-08:00) hours. According to the results obtained from the research, it was determined that the indoor climate parameters in the greenhouse change during the average daily, daytime and night hours at different times of the day and at different locations. According to this, it has been determined that it is important for better regulation of the greenhouse climate by monitoring the changes in the plant level as it rises from the greenhouse floor to the ridge with multiple sensors instead of a single sensor.
Rocznik
Tom
Strony
105--115
Opis fizyczny
Bibliogr. 31 poz., rys., tab.
Twórcy
autor
  • Department of Biosystem Engineering, Faculty of Agriculture, Kırşehir Ahi Evran University, Türkiye
  • Agriculture and Geothermal Project Coordinatorship, Kırşehir Ahi Evran University,
  • Department of Biosystem Engineering, Faculty of Engineering, Alanya Alaaddin Keykubat University, Alanya/Antalya, Türkiye
  • Department of Plant Irrigation and Horticulture, University of Science and Technology in Bydgoszcz, Poland
Bibliografia
  • Balendonck, J., van Os, E.A., van der Schoor, R., van Tuijl, B.A.J., Keizer, L.C.P. (2010). Monitoring Spatial and Temporal Distribution of Temperature and Relative Humidity in Greenhouses based on Wireless Sensor Technology. International Conference on Agricultural Engineering, September 6-8, 2010, Clermont-Ferrand, France.
  • Barker, J.C. (1990). Effects of day and night humidity on yield and fruit quality of glasshouse tomatoes (Lycopersicon esculentum Mill.), Journal of Horticultural Science, 65(3), 323-331. https://doi.org/10.1080/00221589.1990.11516061
  • Baytorun, A.N. (2016). Seralar, Sera Tipleri, Donanımı ve İklimlendirilmesi. İstanbul: Nobel Akademik Yayıncılık.
  • Baytorun, A.N., Abak, K., Tokgöz, H., Güler, Y., Üstün, S. (1995). Seraların kışın iklimlendirilmesi ve denetimi üzerinde araştırmalar. Türkiye Bilimsel ve Teknik Araştırma Kurumu. Proje no TOAG-993.
  • Baytorun, A.N., Akyüz, A., Üstün, S., Çaylı, A. (2019). Determination of the effect of thermal screen usage on heat saving in greenhouses and an evaluation from economic perspective. KSU J. Agric Nat, 22(6), 886-895. https://doi.org/10.18016/ksutarimdoga.vi.553702
  • Baytorun, A.N., Üstün, S., Akyüz, A., Çaylı, A. (2017). The determination of heat energy requirement for greenhouses with different hardware under climate conditions Antalya. Turkish Journal of Agriculture – Food Science and Technology, 5(2), 144-152. https://doi.org/10.24925/turjaf.v5i2.144-152.960
  • Cayli, A. (2020). Temperature and relatıve humidity spatıal variability: an assessment of the environmental conditions inside greenhouses. Fresenius Environmental Bulletin, 29(07), 4954-4962.
  • Çaylı, A., Akyüz, A., Baytorun, A.N., Üstün, S., Boyacı, S. (2016). Determination of structural problems causing heat loss with the thermal camera in greenhouses. KSU Journal of Natural Science, 19, 5-14. https://doi.org/10.18016/ksujns.36715
  • Çolak, A. (2002). A Research regarding the determination of the interior temperature of the glasshouse, dewpoint temperature and relative humidity designs in an unheated glasshouse. Ege Üniv. Ziraat Fak. Derg., 39(3), 105-112.
  • Ferentinos, K.P., Katsoulas, N., Tzounis, A., Bartzanas, T., Kittas, C. (2017). Wireless sensor networks for greenhouse climate and plant condition assessment. Biosystems Engineering, 153, 70-81. https://doi.org/10.1016/j.biosystemseng.2016.11.005
  • García-Ruiza, R.A., López-Martíneza, J., Blanco-Claracoa, J.L., Pérez-Alonsoa, J., Callejón-Ferrea, A.J. (2018). On air temperature distribution and ISO 7726-defined heterogeneity inside a typical greenhouse in Almería. Computers and Electronics in Agriculture, 151, 264-275. https://doi.org/10.1016/j.compag.2018.06.001
  • Geoola F., Kashti, F., Levi, A., Brickman, R. (2004). Quality evaluation of anti-drop properties of greenhouse cladding materials. Polymer Testing, 23, 755-761. https://doi.org/10.1016/j.polymertesting.2004.04.006
  • Goldammer, T. (2019). Greenhouse management. A guide to operations and technology. USA: Apex Publishers.
  • Grange, R.I., Hand, D.W. (1987). A review of the effects of atmospheric humidity on the growth of horticultural crops. J. Horti. Sci., 62(2), 125-134. https://doi.org/10.1080/14620316.1987.11515760
  • Harel, D., Fadida, H., Slepoy, A., Gantz, S., Shilo, K. (2014). The effect of mean daily temperature and relative humidity on pollen, fruit set and yield of tomato grown in commercial protected cultivation. Agronomy, 4(1), 167-177. https://doi.org/10.3390/agronomy4010167
  • Hazra, P., Samsul, H.A., Sikder, D., Peter, K.V. (2007). Breeding tomato (Lycopersicon Esculentum Mill) resistant to high temperature stress. International Journal of Plant Breeding, 1(1), 31-40.
  • Iraqi, D., Gagnon, S., Dubé, S., Gosselin, A. (1995). Vapor pressure deficit (VPD) effects on the physiology and yield of greenhouse tomato. Hortscience, 30, 846. https://doi.org/10.21273/HORTSCI.30.4.846E
  • Jarvis, W.R., Shaw, L.A., Traquair, J.A. (1989). Factors affecting antagonism of cucumber powdery mildew by Stephanoascus flocculosus and S. rugulosus. Mycol. Res., 92, 162-165. https://doi.org/10.1016/S0953-7562(89)80006-1
  • Jerszurki, D., Saadon, T., Zhen, J., Agam, N., Tas, E., Rachmilevitch, S., Lazarovitch, N. (2021). Vertical microclimate heterogeneity and dew formation in semi-closed and naturally ventilated tomato greenhouses. Scientia Horticulturae, 288(15), 1-10. https://doi.org/10.1016/j.scienta.2021.110271
  • Katsoulas, N., Ferentinos, K.P., Tzounis, A., Bartzanas, T., Kittas, C. (2017). Spatially distributed greenhouse climate control based on wireless sensor network measurements. Acta Hortic., 1154, 111-120 https://doi.org/10.17660/ActaHortic.2017.1154.15
  • Kittas, C., Karamanis, M., Katsoulas, N. (2005). Air temperature regime in a forced ventilated greenhouse with rose crop. Energy Buildings, 37(8), 807-812. https://doi.org/10.1016/j.enbuild.2004.10.009
  • Lee, Sy., Lee, Ib., Yeo, Uh., Kim, Rw., Kim, Jg. (2019). Optimal sensor placement for monitoring and controlling greenhouse internal environments. Biosystems Engineering, 188, 190-206. https://doi.org/10.1016/j.biosystemseng.2019.10.005
  • Narasimhan, V.L., Arvind, A.A., Bever, K. (2007). Greenhouse asset management using wireless sensor-actor networks. Proc. International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies. https://doi.org/10.1109/UBICOMM.2007.43
  • Nisen, A., Grafiadellis, M., Jiménez, R., La Malfa, G., Martínez-García, P.F., Monteiro, A., Verlodt, H., Villele, O., Zabeltitz, C.H., Denis, J.C., Baudoin, W., Garnaud, J.C. (1988). Cultures protegees en climat mediterraneen. FAO, Rome.
  • Queiroz, Zorzeto, Cesar, T., Ademar, Martins, Leal, P., Carvalho, Branquinho, O., Moura, Miranda, F.A. (2020). Wireless sensor network to identify the reduction of meteorological gradients in greenhouse in subtropical conditions. Journal of Agricultural Engineering, 52(1). https://doi.org/10.4081/jae.2020.1105
  • Ryu, M.J., Ryu, D.K., Chung, S.O., Hur, Y.K., Hur, S.O., Hong, S.J., Sung, J.H., Kim, H.H. (2014). Spatial, vertical, and temporal variability of ambient environments in strawberry and tomato greenhouses in winter. J. of Biosystems Eng., 39(1), 47-56. https://doi.org/10.5307/JBE.2014.39.1.047
  • Seo, I.H., Lee, H.J., Wi, S.H., Lee, S.W., Kim, S.K. (2021). Validation of an air temperature gradient using computa-tional fuid dynamics in a semi-open type greenhouse and determination of kimchi cabbage physiological responses to temperature diferences. Horticulture, Environment and Biotechnology, 62, 737-750. https://doi.org/10.1007/s13580-021-00378-3
  • von Zabeltitz, C. (2011). Introduction. In: Integrated greenhouse systems for mild climates. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14582-7_1
  • Yang, Z., Lia, Y., Lib, P., Zhanga, F., Thomasc, B.W. (2016). Effect of difference between day and night temperature on tomato (Lycopersicon esculentum Mill.) root activity and low molecular weight organic acid secretion. Soil Science and Plant Nutrition, 62(5-6), 423-431. https://doi.org/10.1080/00380768.2016.1224449
  • Zhao, Y., Teitel, M., Barak, M. (2001). Vertical temperature and humidity gradients in a naturally ventilated greenhouse. Journal of Agricultural Engineering Research, 78, 431-436. https://doi.org/10.1006/jaer.2000.0649
  • Zorzeto, TQ., Leal, PAM., Coutinho, VdS., Araújo, HFd. (2014). Gradients of temperature and relative humidity of air in greenhouse with wireless sensor network. 2nd International Conference on Agriculture and Biotechnology IPCBEE vol. 79 (2014) IACSIT Press, Singapore https://doi.org/10.7763/IPCBEE.2014.V79.8
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-99b0e585-ef58-4ed1-a98e-0834b7bb1686
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.