PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The differences between overground and treadmill walking in nonlinear, entropy-based and frequency variables derived from accelerometers in young and older women : preliminary report

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of this study was to compare gait stability and variability between walking conditions and age groups. Methods: Twenty-six healthy younger and older females participated. Trunk acceleration in the vertical (V), medial-lateral (ML) and anteriorposterior (AP) directions during 5 minutes walking overground and 3 minutes walking on the treadmill at self-selected speed were recorded. Root mean square and standard deviations of acceleration, stride time and its variability, Lyapunov exponents (LE), multiscale entropy (MSE) and harmonic ratios (HR) were computed. Results: Both age groups showed significantly higher stride time variability and short-term LE in all directions during overground walking. For the older group, overground walking showed higher V and AP standard deviation. Significantly lower values for overground walking were observed for long-term LE (V and ML for the younger group, ML for the older group), HR (ML for the older group) and MSE (V for the older group). Significant age-related differences were found for V long-term LE for overground walking. Conclusions: The present findings suggest that both linear and advanced computational techniques for gait stability and variability assessment in older adults are sensitive to walking conditions.
Rocznik
Strony
93--100
Opis fizyczny
Bibliogr. 30 poz., tab.
Twórcy
autor
  • Palacky University Olomouc, Faculty of Physical Culture, Department of Natural Sciences in Kinanthropology, Olomouc, Czech Republic
autor
  • Palacky University Olomouc, Faculty of Physical Culture, Department of Natural Sciences in Kinanthropology, Olomouc, Czech Republic
autor
  • Palacky University Olomouc, Faculty of Physical Culture, Department of Natural Sciences in Kinanthropology, Olomouc, Czech Republic
autor
  • University Grenoble Alpes, EA AGEIS, Grenoble, France
  • French University Institute, Paris, France
autor
  • Institute of Normal and Pathological Physiology, Slovak Academy of Sciences, Bratislava, Slovakia
autor
  • Palacky University Olomouc, Faculty of Physical Culture, Department of Natural Sciences in Kinanthropology, Olomouc, Czech Republic
Bibliografia
  • [1] ALTON F., BALDEY L., CAPLAN S., MORRISSEY M.C., A Kinematic comparison of overground and treadmill walking, Clin. Biomech., 1998, 13(6), 434–440.
  • [2] BISI M.C., RIVA F., STAGNI R., Measures of gait stability: Performance on adults and toddlers at the beginning of independent walking, J. Neuroeng. Rehabil., 2014, 11, 131.
  • [3] BUZZI U.H., STERGIOU N., KURZ M.J., HAGEMAN P.A., HEIDEL J., Nonlinear dynamics indicates aging affects variability during gait, Clin. Biomech., 2003, 18(5), 435–443.
  • [4] COSTA M., GOLDBERGER A.L., PENG C.-K., Multiscale entropy analysis of complex physiologic time series, Phys. Rev. Lett., 2002, 89(6), 068102.
  • [5] COSTA M., GOLDBERGER A.L., PENG C.-K., Multiscale entropy analysis of biological signals, Phys. Rev. E, 2005, 71, 021906.
  • [6] COSTA M., PENG C.-K., GOLDBERGER A.L., HAUSDORFF J.M., Multiscale entropy analysis of human gait dynamics, Physica A, 2003, 330(1–2), 53–60.
  • [7] DINGWELL J.B., CUSUMANO J.P., CAVANAGH P.R., STERNAD D., Local dynamic stability versus kinematic variability of continuous overground and treadmill walking, J. Biomech. Eng., 2001, 123(1), 27–32.
  • [8] DINGWELL J.B., KANG H.G., Differences between local and orbital dynamic stability during human walking, J. Biomech. Eng., 2007, 129(4), 586–593.
  • [9] DRUŻBICKI M., PRZYSADA G., GUZIK A., KWOLEK A., BRZOZOWSKA-MAGOŃ A., SOBOLEWSKI M., Evaluation of the impact of exercise of gait on a treadmill on balance of people who suffered from cerebral stroke, Acta Bioeng. Biomech., 2016, 18(4), 41–48.
  • [10] ENGLAND S.A., GRANATA K.P., The influence of gait speed on local dynamic stability of walking, Gait Posture, 2007, 25(2), 172–178.
  • [11] FRAZZITTA G., PEZZOLI G., BERTOTTI G., MAESTRI R., Asymmetry and freezing of gait in parkinsonian patients, J. Neurol., 2013, 260(1), 71–76.
  • [12] GOLDBERGER A.L., AMARAL L.A.N., GLASS L., HAUSDORFF J.M., IVANOV P.C., MARK R.G., MIETUS J.E., MOODY G.B., PENG C.-K., STANLEY H.E., PhysioBank, PhysioToolkit, and PhysioNet: Components of a new research resource for complex physiologic signals, Circulation, 2000, 101(23), e215–e220.
  • [13] HARBOURNE R.T., STERGIOU N., Movement variability and the use of nonlinear tools: Principles to guide physical therapist practice, Phys. Ther., 2009, 89(3), 267–282.
  • [14] HASSID E., ROSE D., COMMISAROW J., GUTTRY M., DOBKIN B.H., Improved gait symmetry in hemiparetic stroke patients induced during body weight–supported treadmill stepping, J. Neurol. Rehabil., 1997, 11(1), 21–26.
  • [15] HOWCROFT J., KOFMAN J., LEMAIRE E.D., Review of fall risk assessment in geriatric populations using inertial sensors, J. Neuroeng. Rehabil., 2013, 10, 91.
  • [16] KANG H.G., COSTA M.D., PRIPLATA A.A., STAROBINETS O.V., GOLDBERGER A.L., PENG C.K., KIELY D.K., CUPPLES L.A., LIPSITZ L.A., Frailty and the degradation of complex balance dynamics during a dual-task protocol, J. Gerontol. A Biol. Sci. Med. Sci., 2009, 64(12), 1304–1311.
  • [17] LEE S.J., HIDLER J., Biomechanics of overground vs. treadmill walking in healthy individuals, J. Appl. Physiol., 2008, 104(3), 747–755.
  • [18] MARSH A.P., KATULA J.A., PACCHIA C.F., JOHNSON L.C., KOURY K.L., REJESKI W.J., Effect of treadmill and overground walking on function and attitudes in older adults, Med. Sci. Sports Exerc., 2006, 38(6), 1157–1164.
  • [19] MENZ H.B., LORD S.R., FITZPATRICK R.C., Acceleration patterns of head and pelvis when walking on level and irregular surfaces, Gait Posture, 2003, 18(1), 35–46.
  • [20] MURRAY M.P., SPURR G.B., SEPIC S.B., GARDNER G.M., MOLLINGER L.A., Treadmill vs floor walking: Kinematics, electromyogram, and heart rate, J. Appl. Physiol., 1985, 59(1), 87–91.
  • [21] OHTAKI Y., ARIF M., SUZUKI A., FUJITA K., INOOKA H., NAGATOMI R., TSUJI I., Assessment of walking stability of elderly by means of nonlinear time–series analysis and simple akcelerometry, JSME Int. J. C – Mech. Sy., 2005, 48, 607–612.
  • [22] PARVATANENI K., PLOEG L., OLNEY S.J., BROUWER B., Kinematic, kinetic and metabolic parameters of treadmill versus overground walking in healthy older adults, Clin. Biomech., 2009, 24(1), 95–100.
  • [23] RILEY P.O., PAOLINI G., CROCE U.D., PAYLO K.W., KERRIGAN D.C., A Kinematic and kinetic comparison of overground and treadmill walking in healthy subjects, Gait Posture, 2007, 26(1), 17–24.
  • [24] RIVA F., BISI M.C., STAGNI R., Gait variability and stability measures: Minimum number of strides and withinsession reliability, Comput. Biol. Med., 2014, 50(1), 9–13.
  • [25] RIVA F., TOEBES M.J.P., PIJNAPPELS M., STAGNI R., VAN DIEËN J.H., Estimating fall risk with inertial sensors using gait stability measures that do not require step detection, Gait Posture, 2013, 38(2), 170–174.
  • [26] ROSENSTEIN M.T., COLLINS J.J., DE LUCA C.J., A practical method for calculating largest lyapunov exponents from small data sets, Physica D, 1993, 65(1–2), 117–134.
  • [27] TERRIER P., REYNARD F., Effect of age on the variability and stability of gait: A cross-sectional treadmill study in healthy individuals between 20 and 69 years of age, Gait Posture, 2015, 41(1), 170–174.
  • [28] TERRIER P., DERIAZ O., Kinematic variability, fractal dynamics and local dynamic stability of treadmill walking, J. Neuroeng. Rehabil., 2011, 8, 12.
  • [29] WHITE S.C., YACK H.J., TUCKER C.A., LIN H.Y., Comparison of vertical ground reaction forces during overground and treadmill walking, Med. Sci. Sports Exerc., 1998, 30(10), 1537–1542.
  • [30] ZIJLSTRA W., HOF A.L., Assessment of spatio-temporal gait parameters from trunk accelerations during human walking, Gait Posture, 2003, 18(2), 1–10.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
This work was supported by a research grant from the Czech Science Foundation (grant No. 15–13980S).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-99aca6b0-6fb0-439c-ac87-2c341142e054
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.