PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Budget of 90Sr in the Gulf of Gdańsk (southern Baltic Sea)

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the period from 2005 to 2011 the major source of 90Sr to the Gulf of Gdańsk was the Vistula river. Its contribution was 99.7% of the total load. The main processes responsible for the decrease in 90Sr activity in the Gulf of Gdańsk were: radioactive decay (87%) and sediment deposition (13%). Average increase in the activity of 90Sr in the Gulf of Gdańsk during the study period was 5.0% (114 GBq), which was almost 2 times higher than the loss of 90Sr due to radioactive decay. In the years 1997-2015, the effective half-life of 137Cs was 9.1 years and that of 90Sr was 50.3 years. Assuming a further decrease in 137Cs and maintaining 90Sr concentrations at present level, it is expected that 90Sr will become the major anthropogenic isotope having impact on the level of radioactivity in the Gulf of Gdańsk.
Słowa kluczowe
Czasopismo
Rocznik
Strony
256--263
Opis fizyczny
Bibliogr. 32 poz., mapy, tab., wykr.
Twórcy
autor
  • Institute of Meteorology and Water Management, National Research Institute, Gdynia, Poland
autor
  • Institute of Meteorology and Water Management, National Research Institute, Gdynia, Poland
Bibliografia
  • [1] Baklanov, A., Sorensen, J. H., 2001. Parameterisation of radionuclide deposition in atmospheric long-range transport modelling. Phys. Chem. Earth (B) 26 (10), 787-799, http://dx.doi.org/10.1016/S1464-1909(01)00087-9.
  • [2] Brzeska, P., Saniewski, M., 2012. In: Zalewska, T., Jakusik, E., Łysiak-Pastuszak, E., Krzymiński, W. (Eds.), Phytobentos in Southern Baltic in 2011 — Characteristics of Selected Elements of the Environment, IMGW-PIB, Gdynia, 120-128, (in Polish).
  • [3] Carman, R., Cederwall, H., 2001. Sediments and macrofauna in the Baltic Sea –— characteristics, nutrient contents and distribution. In: Wulff, F., Rahm, L., Larsson, P. (Eds.), A System Analysis of the Baltic Sea. Springer-Verlag, Berlin Heidelberg, 289-327.
  • [4] Cross, M. A., Smith, J. T., Saxèn, R., Timms, D., 2002. An analysis of the environmental mobility of radiostrontium from weapons testing and Chernobyl in Finnish river catchments. J. Environ. Radioactiv. 60, 149-163, http://dx.doi.org/10.1016/S0265-931X(01)00101-1.
  • [5] Håkanson, L., Lundin, L.-C., Savchuk, O., Ionov, V., Musielak, S., Furmanczyk, K., 2003. The Baltic Sea. In: Ryden, L., Migula, P., Andersson, M. (Eds.), Environmental Science. 1 Baltic Univ. Press, Uppsala, 20-147.
  • [6] HELCOM, 2009. Radioactivity in the Baltic Sea 1999-2006, Baltic Sea Environ. Proc. No. 117, 64 pp.
  • [7] HELCOM, 2010. Hazardous substances in the Baltic Sea — an integrated thematic assessment of hazardous substances in the Baltic Sea. In: Baltic Sea Environ. Proc. No. 120B. 119 pp.
  • [8] IAEA, 2005. Worldwide marine radioactivity studies (WOMARS). Radionuclide levels in oceans and seas. Final report of a coordinated research project. International Atomic Energy Agency, 197 pp.
  • [9] Kryshev, A. I., 2006. 90Sr in fish: a review of data and possible model approach. Sci. Total Environ. 370, 182-189, http://dx.doi.org/10.1016/j.scitotenv.2006.06.003.
  • [10] Łukawska-Matuszewska, K., Bolałek, J., 2008. Spatial distribution of phosphorus forms in sediments in the Gulf of Gdańsk (southern Baltic Sea). Cont. Shelf Res. 28 (7), 977-990.
  • [11] Majewski, A., 1990. Gulf of Gdańsk. Geological Publ., Warszawa, 500 pp. (in Polish).
  • [12] Nielsen, S. P., Bengston, P., Bojanowski, R., Hagel, P., Herrmann, J., Ilus, E., Jakobson, E., Motiejunas, S., Panteleev, Y., Skujina, A., Suplinska, M., 1999. The radiological exposure of man from radioactivity in the Baltic Sea. Sci. Total Environ. 237-238, 133-141, http://dx.doi.org/10.1016/S0048-9697(99)00130-8.
  • [13] Nies, H., Bojanowski, R., Karlberg, O., Nielsen, S. P., 1995. Sources of radioactivity in the Baltic Sea. Baltic Sea Environ. Proc. No. 61 6-18.
  • [14] Ritchie, J. C., McHenry, J. R., 1990. Application of radioactive fallout Cesium-137 for measuring soil erosion and sediment accumulation rates and patterns. J. Environ. Qual. 19 (2), 215-233, http://dx.doi.org/10.2134/jeq1990.00472425001900020006x.
  • [15] Saniewski, M., 2013. Spatiotemporal variations of the 90Sr in the southern part of the Baltic Sea over the period of 2005-2010. Sci. World J. Article ID 276098.
  • [16] Saniewski, M., Zalewska, T., 2016. Atmospheric deposition and riverine load of 90Sr and 137Cs to the Gulf of Gdańsk (southern Baltic Sea) in the period 2005-2011. J. Environ. Radioactiv. 151, 1-11, http://dx.doi.org/10.1016/j.jenvrad.2015.09.010.
  • [17] Saniewski, M., Zalewska, T., 2017. 90Sr in Zostera marina in Gulf of Gdańsk (southern Baltic Sea). Oceanol. Hydrobiol. Stud. 46 (1), 24-29, http://dx.doi.org/10.1515/ohs-2017-0003.
  • [18] Solecki, J., 2006. Studies of 90Sr concentration and migration in the soils of the Łęczna-Włodawa Lake District. J. Radioanal. Nucl. Chem. 274 (1), 27-38, http://dx.doi.org/10.1007/s10967-006-6889-x.
  • [19] Solecki, J., Chibowski, S., 2001. Studies of soil samples mineralization conditions preceding the determination of 90Sr. J. Radioanal. Nucl. Chem. 247, 165-169.
  • [20] Szostak, S., Kuzebski, E., Budny, T., 2006. Maritime Fishing Industry in 2005. Nat. Mar. Fisheries Res. Inst., Gdynia, 34 pp. (in Polish).
  • [21] Szostak, S., Kuzebski, E., Budny, T., Rakowski, M., 2007. Maritime Fishing Industry in 2006. Mar. Fisheries Res. Inst., Gdynia, 37 pp. (in Polish).
  • [22] Szostak, S., Kuzebski, E., Rakowski, M., Budny, T., 2008. Maritime Fishing Industry in 2007. Mar. Fisheries Res. Inst., Gdynia, 38 pp. (in Polish).
  • [23] Szostak, S., Kuzebski, E., Rakowski, M., Budny, T., 2009. Maritime Fishing Industry in 2008. Mar. Fisheries Res. Inst., Gdynia, 39 pp. (in Polish).
  • [24] Szostak, S., Rakowski, M., Budny, T., 2010. Maritime Fishing Industry in 2009. National Mar. Fisheries Res. Inst., Gdynia, 35 pp. (In Polish).
  • [25] Szostak, S., Rakowski, M., Budny, T., 2011. Maritime Fishing Industry in 2010. National Mar. Fisheries Res. Inst., Gdynia, 35 pp. (In Polish).
  • [26] Szostak, S., Rakowski, M., Budny, T., 2012. Maritime Fishing Industry in 2011. National Mar. Fisheries Res. Inst., Gdynia, 34 pp. (In Polish).
  • [27] UNSCEAR, 1982. Ionizing Radiation Sources and Biological Effects; Report to the General Assembly with annexes. UN Publ., New York, 770 pp.
  • [28] Wängberg, I., Schmolke, S., Schager, P., Munthe, J., Ebinhaus, R., Iverfeldt, A., 2001. Estimates of air-sea exchange of mercury in the Baltic Sea. Atmos. Environ. 35, 5477-5484, http://dx.doi.org/10.1016/S1352-2310(01)00246-1.
  • [29] Zalewska, T., 2015. Makrofitobentos Bioindicators in the Classification of the Marine Environment of the Southern Baltic Sea. IMGW-PIB, Warszawa, (in Polish).
  • [30] Zalewska, T., Saniewski, M., Suplińska, M., Rubel, B., 2016. 90Sr in fish from the southern Baltic Sea, coastal lagoons and freshwater lake. J. Environ. Radioactiv. 158-159, 38-46, http://dx.doi.org/10.1016/j.jenvrad.2016.03.024.
  • [31] Zalewska, T., Suplińska, M., 2013. Anthropogenic radionuclides 137Cs and 90Sr in the southern Baltic Sea ecosystem. Oceanologia 55 (3), 485-517, http://dx.doi.org/10.5697/oc.55-3.485.
  • [32] Zalewska, T., Woroń, J., Danowska, B., Suplińska, M., 2015. Temporal changes in Hg, Pb, Cd and Zn environmental concentrations in the southern Baltic Sea sediments dated with 210Pb method. Oceanologia 57 (1), 32-43, http://dx.doi.org/10.1016/j.oceano.2014.06.003.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-99ab7449-ba77-4dcf-bef7-6deafaeb9c11
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.