PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Physical control on the inter-annual variability of summer dissolved nutrient concentration and phytoplankton biomass in the Indian sector of the Southern Ocean

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
To understand the role of physical processes and their interannual variability on the dissolved nutrient concentration and phytoplankton biomass distribution, field data collected in the Indian sector of the Southern Ocean (ISSO) during the austral summer of 2009–2011 are used. In the subtropical zone, macronutrients were limited (N:P < 1, N:Si < 1, Si:P ≈ 1) and the phytoplankton biomass variability was mainly governed by the mesoscale eddy activity associated with the Agulhas Return Current. High nutrient low chlorophyll condition prevailed in the sub-Antarctic zone and further south. A South-North gradient of the upper layer dissolved SiO2 was higher than that of NO3. The sub-Antarctic zone was characterized by the highest N:Si ratio (>4) and it was associated with the enhanced draw down of silicate due to the winter/spring diatom blooms in the region. The chlorophyll-a (CHL) concentration in the Polar Frontal Zone was low (0.2 mg m–3) in 2009 and 2010 but it was high (0.5 mg m–3) in 2011. This increase in CHL in 2011 was due to the supply of dissolved iron from the strong winds and subsequent mixing during the winter of 2010. Further, the increased CHL values in the Antarctic zone (0.5 mg m–3) in 2011 compared to 2009 and 2010 could be due to the increased sea ice melting associated with positive Southern Annular Mode. The increased phytoplankton biomass in the summer of 2011 coincides with an increase in nitrate utilization (N:P≈13) compared to 2009 and 2010. Observations showed that ISSO frontal zones are characterized by inter-annual variability in terms of nutrient utilization and phytoplankton biomass production.
Czasopismo
Rocznik
Strony
675--693
Opis fizyczny
Bibliogr. 82 poz., rys., tab., wykr.
Twórcy
  • National Centre for Polar and Ocean Research, Goa, India
  • National Centre for Polar and Ocean Research, Goa, India
  • National Centre for Polar and Ocean Research, Goa, India
  • National Centre for Polar and Ocean Research, Goa, India
  • National Centre for Polar and Ocean Research, Goa, India
  • National Centre for Polar and Ocean Research, Goa, India
Bibliografia
  • 1. Anilkumar, N., Chacko, R., Sabu, P., Pillai, H.U., George, J.V., Achuthankutty, C., 2014. Biological response to physical processes in the indian ocean sector of the southern ocean: a case study in the coastal and oceanic waters. Environ. Monit. Assess. 186, 8109-8124. https://doi.org/10.1007/s10661-014-3990-4
  • 2. Anilkumar, N., George, J., Chacko, R., Nuncio, N., Sabu, P., 2015. Variability of fronts, fresh water input and chlorophyll in the indian ocean sector of the southern ocean. N. Z. J. Mar. Freshwater Res. 49, 20-40. https://doi.org/10.1080/00288330.2014.924972
  • 3. Anilkumar, N., Luis, A.J., Somayajulu, Y., Babu, V.R., Dash, M., Pednekar, S., Babu, K., Sudhakar, M., Pandey, P., 2006. Fronts, water masses and heat content variability in the western indian sector of the southern ocean during austral summer 2004. J. Mar. Syst. 63, 20-34. https://doi.org/10.1016/j.jmarsys.2006.04.009
  • 4. Ansorge, I.J., Lutjeharms, J.R., 2005. Direct observations of eddy turbulence at a ridge in the southern ocean. Geophys. Res. Lett. 32. https://doi.org/10.1029/2005GL022588
  • 5. Assmy, P., Smetacek, V., Montresor, M., Klaas, C., Henjes, J., Strass, V.H., Arrieta, J.M., Bathmann, U., Berg, G.M., Breitbarth, E., et al., 2013. Thick-shelled, grazer-protected diatoms decouple ocean carbon and silicon cycles in the iron-limited Antarctic Circumpolar Current. Proc. Natl. Acad. Sci. 110, 20633-20638. https://doi.org/10.1073/pnas.1309345110
  • 6. Backeberg, B.C., Penven, P., Rouault, M., 2012. Impact of intensified indian ocean winds on mesoscale variability in the Agulhas system. Nat. Clim. Change. 2, 608-612. https://doi.org/10.1038/nclimate1587
  • 7. Bailey, R., Gronell, A., Phillips, H., Tanner, E., Meyers, G., 1994. Quality control cookbook for xbt data (expendable bathythermograph data). version 1.1.
  • 8. Beal, L.M., De Ruijter, W.P., Biastoch, A., Zahn, R., 2011. On the role of the Agulhas system in ocean circulation and climate. Nature 472, 429-436. https://doi.org/10.1038/nature09983
  • 9. Belkin, I.M., Gordon, A.L., 1996. Southern ocean fronts from the greenwich meridian to tasmania. J. Geophys. Res. - Oceans 101, 3675-3696.
  • 10. Blain, S., Tréguer, P., Belviso, S., Bucciarelli, E., Denis, M., Desabre, S., Fiala, M., Jézéquel, V.M., Le Fèvre, J., Mayzaud, P., Marty, J.-C., Razouls, S., 2001. A biogeochemical study of the Island mass effect in the context of the iron hypothesis: Kerguelen islands, Southern Ocean. Deep-Sea Res. Pt. I, 48, 163-187. https://doi.org/10.1016/S0967-0637(00)00047-9
  • 11. Boyd, P.W., 2002. Environmental factors controlling phytoplankton processes in the Southern Ocean. J. Phycol. 38, 844-861. https://doi.org/10.1046/j.1529- 8817.2002.t01-1-01203.x
  • 12. Boyd, P.W., Ellwood, M.J., 2010. The biogeochemical cycle of iron in the ocean. Nat. Geosci. 3, 675-682. https://doi.org/10.1038/ngeo964
  • 13. Boyd, P.W., Strzepek, R., Chiswell, S., Chang, H., DeBruyn, J.M., Ellwood, M., Keenan, S., King, A.L., Maas, E.W., Nodder, S., Sander, S.G., 2012. Microbial control of diatom bloom dynamics in the open ocean. Geophys. Res. Lett. 39 (18). https://doi.org/10.1029/2012GL053448
  • 14. Boyd, P.W., Strzepek, R., Fu, F., Hutchins, D.A., 2010. Environmental control of open-ocean phytoplankton groups: Now and in the future. Limnol. Oceanogr. 55, 1353-1376. https://doi.org/10.4319/lo.2010.55.3.1353
  • 15. Briggs, E.M., Martz, T.R., Talley, L.D., Mazloff, M.R., Johnson, K.S., 2018. Physical and Biological Drivers of Biogeochemical Tracers Within the Seasonal Sea Ice Zone of the Southern Ocean From Profiling Floats. J. Geophys. Res. - Oceans 123, 746-758. https://doi.org/10.1002/2017JC012846
  • 16. Dawson, H.R., Strutton, P.G., Gaube, P., 2018. The unusual surface chlorophyll signatures of southern ocean eddies. J. Geophys. Res. - Oceans 123, 6053-6069. https://doi.org/10.1029/2017JC013628
  • 17. de Jong, J., Schoemann, V., Maricq, N., Mattielli, N., Langhorne, P., Haskell, T., Tison, J.L., 2013. Iron in land-fast sea ice of Mc-Murdo Sound derived from sediment resuspension and windblown dust attributes to primary productivity in the Ross Sea, Antarctica. Mar. Chem. 157, 24-40. https://doi.org/10.1016/j.marchem.2013.07.001
  • 18. Demuynck, P., Tyrrell, T., Naveira Garabato, A., Moore, M.C., Martin, A.P., 2020. Spatial variations in silicate-to-nitrate ratios in Southern Ocean surface waters are controlled in the short term by physics rather than biology. Biogeosciences 17, 2289-2314. https://doi.org/10.5194/bg-17-2289-2020
  • 19. Deppeler, S.L., Davidson, A.T., 2017. Southern Ocean phytoplankton in a changing climate. Front. Mar. Sci. 4, 40. https://doi.org/10.3389/fmars.2017.00040
  • 20. Dong, S., Sprintall, J., Gille, S.T., 2006. Location of the Antarctic polar front from AMSR-E satellite sea surface temperature measurements. J. Phys. Oceanogr. 36, 2075-2089. https://doi.org/10.1175/JPO2973.1
  • 21. Dubischar, C.D., Bathmann, U.V., 1997. Grazing impact of copepods and salps on phytoplankton in the Atlantic sector of the Southern Ocean. Deep Sea Res. Pt. II 44, 415-433.
  • 22. Frenger, I., Münnich, M., Gruber, N., 2018. Imprint of Southern Ocean eddies on chlorophyll. Biogeosciences 15, 4781-4798. https://doi.org/10.5194/bg-2018-70
  • 23. Frew, R.D., Hutchins, D.A., Nodder, S., Sanudo-Wilhelmy, S., Tovar-Sanchez, A., Leblanc, K., Hare, C.E., Boyd, P.W., 2006. Particulate iron dynamics during FeCycle in subantarctic waters southeast of New Zealand. Global Biogeochem. Cy. 20. https://doi.org/10.1029/2005GB002558
  • 24. Gandhi, N., Ramesh, R., Laskar, A., Sheshshayee, M., Shetye, S., Anilkumar, N., Patil, S.M., Mohan, R., 2012. Zonal variability in primary production and nitrogen uptake rates in the southwestern Indian Ocean and the Southern Ocean. Deep-Sea Res. Pt. I 67, 32-43. https://doi.org/10.1016/j.dsr.2012.05.003
  • 25. Gao, Y., Fan, S.M., Sarmiento, J.L., 2003. Aeolian iron input to the ocean through precipitation scavenging: A modeling perspective and its implication for natural iron fertilization in the ocean. J. Geophys. Res. Atmos. 108. https://doi.org/10.1029/2002JD002420
  • 26. George, J.V., Anilkumar, N., 2022. High-frequency noise and depth error associated with the XCTD/XBT profiles in the Indian Ocean sector of Southern Ocean and southwestern tropical Indian Ocean. J. Earth Syst. Sci. 131 (1), 1-13. https://doi.org/10.1007/s12040-021-01789-7
  • 27. George, J.V., Anilkumar, N., Nuncio, M., Soares, M.A., Naik, R.K., Tripathy, S.C., 2018. Upper layer diapycnal mixing and nutrient flux in the subtropical frontal region of the Indian sector of the Southern Ocean. J. Mar. Syst. 187, 197-205. https://doi.org/10.1016/j.jmarsys.2018.07.007
  • 28. Grasshoff, K., Ehrhardt, M., Kremling, K., 1983. Methods of Seawater Analysis. Verlag Chem., Weinheim, 600 pp.
  • 29. Gregg, W.W., Casey, N.W., 2007. Modeling coccolithophores in the global oceans. Deep Sea Res. Pt. II 54 (5—7), 447-477. https://doi.org/10.1016/j.dsr2.2006.12.007
  • 30. Giddy, I.S., Swart, S., Tagliabue, A., 2012. Drivers of non-redfield nutrient utilization in the atlantic sector of the southern ocean. Geophys. Res. Lett. 39. https://doi.org/10.1029/2012GL052454
  • 31. Gruber, N., Landschützer, P., Lovenduski, N.S., 2019. The variable Southern Ocean carbon sink. Annu. Rev. Mar. Sci. 11, 159-186. https://doi.org/10.1146/annurev-marine-121916-063407
  • 32. Hadfield, M.G., 2011. Expected and observed conditions during the sage iron addition experiment in subantarctic waters. Deep Sea Res. Pt. II 58, 764-775. https://doi.org/10.1016/j.dsr2.2010.10.016
  • 33. Henley, S.F., Cavan, E.L., Fawcett, S.E., Kerr, R., Monteiro, T., Sherrell, R.M., Bowie, A.R., Boyd, P.W., Barnes, D.K., Schloss, I.R., Marshall, T., 2020. Changing biogeochemistry of the Southern Ocean and its ecosystem implications. Front. Mar. Sci. 581. https://doi.org/10.3389/fmars.2020.00581
  • 34. Holm-Hansen, O., Kahru, M., Hewes, C.D., 2005. Deep chlorophyll a maxima (dcms) in pelagic Antarctic waters. ii. relation to bathymetric features and dissolved iron concentrations. Mar. Ecol. Prog. Ser. 297, 71-81. https://doi.org/10.3354/meps297071
  • 35. Hoppema, M., de Baar, H.J., Fahrbach, E., Hellmer, H.H., Klein, B., 2003. Substantial advective iron loss diminishes phytoplankton production in the Antarctic Zone. Global Biogeochem. Cy. 17. https://doi.org/10.1029/2002GB001957
  • 36. Huot, Y., Babin, M., Bruyant, F., Grob, C., Twardowski, M., Claustre, H., 2007. Does chlorophyll a provide the best index of phytoplankton biomass for primary productivity studies? Biogeosci. Discuss. 4, 707-745.
  • 37. Jasmine, P., Muraleedharan, K., Madhu, N., Devi, C.A., Alagarsamy, R., Achuthankutty, C., Jayan, Z., Sanjeevan, V., Sahayak, S., 2009. Hydrographic and productivity characteristics along 45°E longitude in the southwestern Indian Ocean and Southern Ocean during austral summer 2004. Mar. Ecol. Prog. Ser. 389, 97-116. https://doi.org/10.3354/meps08126
  • 38. Kahru, M., Mitchell, B., Gille, S., Hewes, C., Holm-Hansen, O., 2007. Eddies enhance biological production in the Weddell-Scotia confluence of the Southern Ocean. Geophys. Res. Lett. 34. https://doi.org/10.1029/2007GL030430
  • 39. Kostianoy, A.G., Ginzburg, A.I., Frankignoulle, M., Delille, B., 2004. Fronts in the Southern Indian Ocean as inferred from satellite sea surface temperature data. J. Mar. Syst. 45, 55-73. https://doi.org/10.1016/j.jmarsys.2003.09.004
  • 40. Lannuzel, D., Vancoppenolle, M., Van der Merwe, P., De Jong, J., Meiners, K.M., Grotti, M., Nishioka, J., Schoemann, V., 2016.Iron in sea ice: Review and new insights. Elem. Sci. Anth. 4. https://doi.org/10.12952/journal.elementa.000130
  • 41. Llido, J., Garon, V., Lutjeharms, J., Sudre, J., 2005. Event-scale blooms drive enhanced primary productivity at the subtropical convergence. Geophys. Res. Lett. 32. https://doi.org/10.1029/2005GL022880
  • 42. Longhurst, A.R., 2010. Ecological geography of the sea. Elsevier.
  • 43. Lutjeharms, J., Ansorge, I., 2001. The agulhas return current. J. Mar. Syst. 30, 115-138. https://doi.org/10.1016/S0924-7963(01)00041-0
  • 44. Marinov, I., Gnanadesikan, A., Toggweiler, J., Sarmiento, J.L., 2006. The Southern Ocean biogeochemical divide. Nature 441, 964-967. https://doi.org/10.1038/nature04883
  • 45. Martin, J.H., Gordon, R.M., Fitzwater, S.E., 1990. Iron in Antarctic waters. Nature 345, 156-158.
  • 46. McGillicuddy, D., Robinson, A., Siegel, D., Jannasch, H., Johnson, R., Dickey, T., McNeil, J., Michaels, A., Knap, A., 1998. Influence of mesoscale eddies on new production in the Sargasso sea. Nature 394, 263-266. https://doi.org/10.1038/28367
  • 47. Mendes, C.R.B., Kerr, R., Tavano, V.M., Cavalheiro, F.A., Garcia, C.A.E., Dessai, D.R.G., Anilkumar, N., 2015. Cross-front phytoplankton pigments and chemotaxonomic groups in the Indian sector of the Southern ocean. Deep Sea Res. Pt. II 118, 221-232. https://doi.org/10.1016/j.dsr2.2015.01.003
  • 48. Milligan, A.J., Harrison, P.J., 2000. Effects of non-steady-state iron limitation on nitrogen assimilatory enzymes in the marine diatom THALASSIOSIRA WEISSFLOGII (BACILLARIOPHYCEAE). J. Phycol. 36, 78-86. https://doi.org/10.1046/j.1529-8817.2000.99013.x
  • 49. Mitchell, B.G., Brody, E.A., Holm-Hansen, O., McClain, C., Bishop, J., 1991. Light limitation of phytoplankton biomass and macronutrient utilization in the Southern Ocean. Limnol. Oceanogr. 36, 1662-1677.
  • 50. Moore, J.K., Abbott, M.R., 2000. Phytoplankton chlorophyll distributions and primary production in the Southern Ocean. J. Geophys. Res. - Oceans 105, 28709-28722.
  • 51. Moore, J.K., Fu, W., Primeau, F., Britten, G.L., Lindsay, K., Long, M., Doney, S.C., Mahowald, N., Hoffman, F., Randerson, J.T., 2018. Sustained climate warming drives declining marine biological productivity. Science 359 (6380), 1139-1143. https://doi.org/10.1126/science.aao6379
  • 52. Naik, R.K., George, J.V., Soares, M.A., Devi, A., Anilkumar, N., Roy, R., Bhaskar, P.V., Murukesh, N., Achuthankutty, C.T., 2015. Phytoplankton community structure at the juncture of the Agulhas Return Front and Subtropical Front in the Indian Ocean sector of Southern Ocean: Bottom-up and top-down control. Deep Sea Res. 233-239. https://doi.org/10.1016/j.dsr2.2015.01.002, Pt II118
  • 53. Nelson, D.M., Ahern, J.A., Herlihy, L.J., 1991. Cycling of biogenic silica within the upper water column of the Ross Sea. Mar. Chem. 35, 461-476. https://doi.org/10.1016/S0304-4203(09)90037-8
  • 54. Nelson, D.M., Brzezinski, M.A., Sigmon, D.E., Franck, V.M., 2001. A seasonal progression of Si limitation in the Pacific sector of the Southern Ocean. Deep Sea Res. Pt. II 48, 3973-3995. https://doi.org/10.1016/S0967-0645(01)00076-5
  • 55. Nelson, D.M., Smith Jr, W., 1991. Sverdrup revisited: Critical depths, maximum chlorophyll levels, and the control of southern ocean productivity by the irradiance-mixing regime. Limnol. Oceanogr. 36, 1650-1661. https://doi.org/10.4319/lo.1991.36.8.1650
  • 56. Orsi, A.H., Whitworth III, T., Nowlin Jr, W.D., 1995. On the meridional extent and fronts of the Antarctic Circumpolar Current. Deep-Sea Res. Pt. I 42, 641-673.
  • 57. Park, Y.H., Charriaud, E., Fieux, M., 1998. Thermohaline structure of the antarctic surface water/winter water in the indian sector of the Southern Ocean. J. Mar. Syst. 17, 5-23.
  • 58. Park, Y.H., Gamberoni, L., Charriaud, E., 1993. Frontal structure, water masses, and circulation in the crozet basin. J. Geophys. Res. Oceans 98, 12361-12385.
  • 59. Parli, B.V., Dessai, D.R., Anilkumar, N., Chacko, R., Pavithran, S., 2020. Meridional variations in N∗ and Si∗ along 57°3ʹ0 E and 47°E transects in the indian sector of the Southern Ocean during austral summer 2011. Deep Sea Res. Pt. II 178, 104846. https://doi.org/10.1016/j.dsr2.2020.104846
  • 60. Pichevin, L., Ganeshram, R., Geibert, W., Thunell, R., Hinton, R., 2014. Silica burial enhanced by iron limitation in oceanic upwelling margins. Nat. Geosci. 7, 541-546. https://doi.org/10.1038/ngeo2181
  • 61. Planquette, H., Statham, P.J., Fones, G.R., Charette, M.A., Moore, C.M., Salter, I., Nedelec, F.H., Taylor, S.L., French, M., Baker, A., Mahowald, N., Jickells, T.D., 2007. Dissolved iron in the vicinity of the Crozet islands. Southern Ocean. Deep Sea Res. Pt. II 54, 1999-2019. https://doi.org/10.1016/j.dsr2.2007.06.019
  • 62. Pollard, R., Lucas, M., Read, J., 2002. Physical controls on biogeochemical zonation in the Southern Ocean. Deep Sea Res. Pt. II 49, 3289-3305. https://doi.org/10.1016/S0967-0645(02)00084-X
  • 63. Redfield, A.C., 1963. The influence of organisms on the composition of seawater. The sea 2, 26-77.
  • 64. Ryan-Keogh, T.J., Thomalla, S.J., Mtshali, T.N., van Horsten, N.R., Little, H.J., 2018. Seasonal development of iron limitation in the sub-Antarctic zone. Biogeosciences 15, 4647-4660. https://doi.org/10.5194/bg-15-4647-2018
  • 65. Sabu, P., Anilkumar, N., George, J.V., Chacko, R., Tripathy, S., Achuthankutty, C., 2014. The influence of air—sea—ice interactions on an anomalous phytoplankton bloom in the Indian Ocean sector of the Antarctic zone of the southern ocean during the austral summer, 2011. Polar Sci. 8, 370-384. https://doi.org/10.1016/j.polar.2014.08.001
  • 66. Sabu, P., George, J.V., Anilkumar, N., Chacko, R., Valsala, V., Achuthankutty, C., 2015. Observations of watermass modification by mesoscale eddies in the subtropical frontal region of the Indian Ocean sector of Southern Ocean. Deep Sea Res. Pt. II 118, 152-161. https://doi.org/10.1016/j.dsr2.2015.04.010
  • 67. Sallée, J., Speer, K., Rintoul, S., 2010. Zonally asymmetric response of the southern ocean mixed-layer depth to the Southern Annular Mode. Nat. Geosci. 3, 273-279. https://doi.org/10.1038/ngeo812
  • 68. Sanial, V., van Beek, P., Lansard, B., d’Ovidio, F., Kestenare, E., Souhaut, M., Zhou, M., Blain, S., 2014. Study of the phytoplankton plume dynamics off the crozet islands (southern ocean): A geochemical-physical coupled approach. J. Geophys. Res. - Oceans 119, 2227-2237. https://doi.org/10.1002/2013JC009305
  • 69. Sarmiento, J.L., Gruber, N., Brzezinski, M., Dunne, J., 2004. High-latitude controls of thermocline nutrients and low latitude biological productivity. Nature 427, 56-60. https://doi.org/10.1038/nature02127
  • 70. Shramik, P., Rahul, M., Suhas, S., Sahina, G., 2013. Phytoplankton abundance and community structure in the Antarctic polar frontal region during austral summer of 2009. Chin. J. Oceanol. Limnol. 31, 21-30. https://doi.org/10.1007/s00343-013-1309-x
  • 71. Smetacek, V., Klaas, C., Menden-Deuer, S., Rynearson, T.A., 2002. Mesoscale distribution of dominant diatom species relative to the hydrographical field along the Antarctic Polar Front. Deep Sea Res. Pt. II 49, 3835-3848. https://doi.org/10.1016/S0967-0645(02)00113-3
  • 72. Sparrow, M.D., Heywood, K.J., Brown, J., Stevens, D.P., 1996. Current structure of the South Indian ocean. J. Geophys. Res. —Oceans 101, 6377-6391.
  • 73. Strass, V.H., Garabato, A.C.N., Pollard, R.T., Fischer, H.I., Hense, I., Allen, J.T., Read, J.F., Leach, H., Smetacek, V., 2002. Mesoscale frontal dynamics: shaping the environment of primary production in the Antarctic Circumpolar Current. Deep Sea Res. Pt. II 49, 3735-3769. https://doi.org/10.1016/S0967-0645(02)00109-1
  • 74. Strickland, J.D.H., Parsons, T.R., 1972. A Practical Hand Book of Seawater Analysis, 2nd edn. Fish. Res. Board Canada Bull., 167, 310.
  • 75. Tagliabue, A., Mtshali, T., Aumont, O., Bowie, A., Klunder, M., Roychoudhury, A., Swart, S., 2012. A global compilation of dissolved iron measurements: focus on distributions and processes in the Southern Ocean. Biogeosciences 9. https://doi.org/10.5194/bg- 9- 2333- 2012
  • 76. Tagliabue, A., Sallée, J.B., Bowie, A.R., Lévy, M., Swart, S., Boyd, P.W., 2014. Surface-water iron supplies in the Southern Ocean sustained by deep winter mixing. Nat. Geosci. 7, 314-320. https://doi.org/10.1038/ngeo2101
  • 77. Taylor, M.H., Losch, M., Bracher, A., 2013. On the drivers of phytoplankton blooms in the Antarctic marginal ice zone: A modeling approach. J. Geophys. Res. - Oceans 118, 63-75. https://doi.org/10.1029/2012JC008418
  • 78. Timmermans, K.R., Van Der Wagt, B., De Baar, H.J., 2004. Growth rates, half saturation constants, and silicate, nitrate, and phosphate depletion in relation to iron availability of four large, open-ocean diatoms from the Southern Ocean. Limnol. Oceanogr. 49, 2141-2151. https://doi.org/10.4319/lo.2004.49.6.2141
  • 79. Venables, H., Moore, C.M., 2010. Phytoplankton and light limitation in the southern ocean: Learning from high-nutrient, high-chlorophyll areas. J. Geophys. Res. — Oceans 115. https://doi.org/10.1029/2009JC005361
  • 80. Weir, I., Fawcett, S., Smith, S., Walker, D., Bornman, T., Fietz, S., 2020. Winter biogenic silica and diatom distributions in the Indian Sector of the Southern Ocean. Deep-Sea Res. Pt. I 166, 103421. https://doi.org/10.1016/j.dsr.2020.103421
  • 81. Williams, G., Nicol, S., Raymond, B., Meiners, K., 2008. Summertime mixed layer development in the marginal sea ice zone off the Mawson coast. East Antarctica. Deep Sea Res. Pt. II 55, 365-376. https://doi.org/10.1016/j.dsr2.2007.11.007
  • 82. Yuan, X., Martinson, D.G., Dong, Z., 2004. Upper ocean thermohaline structure and its temporal variability in the southeast Indian Ocean. Deep-Sea Res. Pt. I 51, 333-347. https://doi.org/10.1016/j.dsr.2003.10.005
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-99a15fc2-44f9-4152-a2f5-82805e69aba6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.