Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The Wiener index of a connected graph G is the sum of distances between all pairs of vertices of G. The strong product is one of the four most investigated graph products. In this paper the general formula for the Wiener index of the strong product of connected graphs is given. The formula can be simplified if both factors are graphs with the constant eccentricity. Consequently, closed formulas for the Wiener index of the strong product of a connected graph G of constant eccentricity with a cycle are derived.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
81--94
Opis fizyczny
Bibliogr. 18 poz.
Twórcy
autor
- University of Maribor Faculty of Electrical Engineering and Computer Science Koroska 46, 2000 Maribor, Slovenia
- Institute of Mathematics, Physics, and Mechanics Jadranska 19, 1000 Ljubljana, Slovenia
autor
- University of Maribor Faculty of Chemistry and Chemical Engineering Smetanova 17, 2000 Maribor, Slovenia
- Institute of Mathematics, Physics, and Mechanics Jadranska 19, 1000 Ljubljana, Slovenia
Bibliografia
- [1] A.R. Ashrafi, S. Yousefi, Computing the Wiener index of a TUCJhC8(S) nanotorus, MATCH Commun. Math. Comput. Chem. 57 (2007), 403-410.
- [2] R.M. Casablanca, O. Favaron, M. Kouider, Average distance in the strong product of graphs, Utilitas Math. 94 (2014), 31-48.
- [3] F.G. Chung, The average distance and the independence number, J. Graph Theory 12 (1988), 229-235.
- [4] P. Dankelmann, Average distance and the independence number, Discrete Appl. Math. 51 (1994), 73-83.
- [5] P. Dankelmann, Average distance and the domination number, Discrete Appl. Math. 80 (1997), 21-35.
- [6] P. Dankelmann, Average distance and generalized packing in graphs, Discrete Math. 310 (2010), 2334-2344.
- [7] A.A. Dobrynin, I. Gutman, S. Klavzar, P. Żigert, Wiener Index of Hexagonal Systems, Acta Appl. Math. 72 (2002), 247-294.
- [8] R.C. Entringer, D.E. Jackson, D.A. Snyder, Distance in graphs, Czechoslovak Math. J. 26 (1976), 283-296.
- [9] M. Ghorbani, M.A. Hosseinzadeh, On Wiener index of special case of link of fullerenes, Optoelectron Adv. Mat. Journal 4 (2010), 538-539.
- [10] A. Graovac, T. Pisanski, On the Wiener index of a graph, J. Math. Chem. 8 (1991), 53-62.
- [11] R. Hammack, W. Imrich, S. Klavzar, Handbook of Product Graphs, Second Edition, CRC Press, Boca Raton, FL, 2011.
- [12] D.J. Klein, I. Lukovits, I. Gutman, On the definition of the hyper-Wiener index for cycle-containing structures, J. Chem. Inf. Comput. Sci. 35 (1995), 50-52.
- [13] K. Pattabirman, Exact Wiener indices of the strong product of graphs, J. Prime Res. Math. 9 (2013), 18-33.
- [14] K. Pattabiraman, P. Paulraja, Wiener index of the tensor product of a path and a cycle, Discuss. Math. Graph Theory 31 (2011), 737-751.
- [15] K. Pattabiraman, P. Paulraja, On some topological indices of the tensor products of graphs, Discrete Appl. Math. 160 (2012), 267-279.
- [16] K. Pattabiraman, P. Paulraja, Wiener and vertex PI indices of the strong product of graphs, Discuss. Math. Graph Theory 32 (2012), 749-769.
- [17] H. Wiener, Structural determination of paraffin boiling points, J. Amer. Chem. Soc. 69 (1947), 17-20.
- [18] Y.N. Yeh, I. Gutman, On the sum of all distances in composite graphs, Discrete Math. 135 (1994), 359-365.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-99a0aebb-bf7b-48b6-8b24-5d7ed9d4f6b1