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Abstract. The Wiener index of a connected graph G is the sum of distances between all
pairs of vertices of G. The strong product is one of the four most investigated graph products.
In this paper the general formula for the Wiener index of the strong product of connected
graphs is given. The formula can be simplified if both factors are graphs with the constant
eccentricity. Consequently, closed formulas for the Wiener index of the strong product of
a connected graph G of constant eccentricity with a cycle are derived.

Keywords: Wiener index, graph product, strong product.

Mathematics Subject Classification: 05C12, 05C76.

1. INTRODUCTION

The Wiener index is a graph invariant based on distances in a graph and is one of
the oldest molecular-graph-based structure-descriptors proposed by a chemist Harold
Wiener in 1947 [17]. Starting from the middle of 1970s, the Wiener index gained much
on popularity and, since then, new results related to it are constantly reported. For
example, the Wiener index of recently very investigated chemical molecules called
fullerenes and carbon nanotubes was calculated in [1,9]. In the mathematical literature
the Wiener index seems to be first studied in 1976 [8]. For a survey and further
bibliography on the Wiener index see for example [7].

The Wiener index found its first, simplest and most straightforward applications
within modeling of the properties of acyclic molecules, so called alkanes. However, the
vast majority of molecules of interest in chemistry are cyclic. There exists a plethora
of types of cyclic molecules, and – as a consequence – very few general mathematical
results are known for their Wiener indices. Mathematical research is purposeful only
within classes of graphs having some common and uniform structural features.

On the other hand is the Wiener index closely related to another iconic mathe-
matical concept: average distance. For a fix graph they differ only by a multiplication
with a constant related to the order of a graph. The average distance is widely use
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in different areas of science such as physics, astronomy, engineering, social sciences
and many others. If we restrict our self to the graph theory, there exists a connection
between average distance and independence number [3, 4], domination number [5],
generalized packing [6], to name just a few. Hence there also exists a connection
between the Wiener index and mentioned graph concepts.

Graph products form a natural process how to obtain in an ordered way a larger
representative from smaller objects of the same type. One can try also vice versa
and start with a big object and try to decompose it into smaller objects that follow
certain properties. Often, if this process is successful with the respect to some graph
product, one can study the properties of smaller graphs and deriving with it some
information about larger graphs. This comes very handy from time consuming point
of view with studying bigger and bigger systems in recent years. The most studied
graph products are the Cartesian product, the strong product, the direct product,
and the lexicographic product, which are also called standard products, see the recent
monograph [11] on them. In particular for Wiener index, the solution for the Cartesian
product is long known see [10,18]. In [18] also the lexicographic product was settled.
For the strong and the direct product only results for special graphs exist, see [13, 16]
and [14, 15], respectively. In this work we present a general formula for the Wiener
index of the strong product.

The average distance of the strong product was treated in [2] by Casablanca et al.
from the point of pairs of vertices at the same distance. We use another approach based
on distances from a single vertices which yields different formulas presented in the
next section together with some basic definitions. Both main results are then proven
in the forthcoming sections. In the last section we present the use of our approach on
the strong product of an arbitrary connected graph with a constant eccentricity and
a cycle. The later shows the simplicity of our methods comparing with the methods
in [13,16]. In addition, we cover a small gap from [13] for the strong product of two
cycles.

2. PRELIMINARIES AND MAIN RESULTS

Let G be a simple undirected graph. The distance dG(u, v) between vertices u, v ∈ V (G)
is the length of a shortest path between u and v in G. The eccentricity of v, ecc v, is
the maximum distance between v and any other vertex in G.

We use for a graph G the standard notations NG
i [g] for the i-th closed neighborhood

{g′ ∈ V (G) : dG(g, g′) ≤ i}, NG
i (g) for the i-th open neighborhood NG

i [g]− {g} and
SG

i (g) for the i-th sphere {g′ ∈ V (G) : dG(g, g′) = i}. For the cardinality of sets NG
i [g],

NG
i (g) and SG

i (g) we use notations nG
i [g], nG

i (g) and sG
i (g), respectively. Therefore

W G
i (g) =

∑

g′∈NG
i

(g)

dG(g, g′) , W G(g) = W G
ecc g(g) =

ecc g∑

i=1
isG

i (g)
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and the Wiener index of a graph G is

W (G) = 1
2
∑

g∈V (G)

W G(g). (2.1)

The strong product G � H of graphs G and H is a graph with the vertex set
V (G)× V (H). Two vertices (g, h) and (g′, h′) of V (G�H) are adjacent if gg′ ∈ E(G)
and h = h′ or if g = g′ and hh′ ∈ E(H) or if gg′ ∈ E(G) and hh′ ∈ E(H). It is easy
to see that G � H is connected whenever both G and H are connected. The distance
formula is

dG�H((u, v), (x, y)) = max{dG(u, x), dH(v, y)}.
For more properties on the strong product we recommend the book [11].

In this work we prove the following general result on the Winer index of strong
product of two graphs.

Theorem 2.1. Let G and H be connected graphs. If min = min{ecc g, ecc h} for
g ∈ V (G) and h ∈ V (H), then W (G � H) equals to

1
2

∑

(g,h)∈V (G�H)

W G(g)
ecc g∑

j=0
sH

j (h) + 1
2

∑

(g,h)∈V (G�H)

W H(h)
ecc h∑

j=0
sG

j (g)

− 1
2

∑

(g,h)∈V (G�H)




ecc g∑

j=2
sH

j (h)W G
j−1(g) +

ecc h∑

j=2
sG

j (g)W H
j−1(h) +

min∑

i=1
isG

i (g)sH
i (h)


 .

Theorem 2.1 can not be simplified in general. However if we add some additional
conditions on factors, like equal eccentricity of vertices, one obtain much nicer result.
If all vertices of G have the same eccentricity, then we say that G is a graph with
the constant eccentricity eccG := ecc g, g ∈ V (G). All vertex transitive graphs clearly
have this property and among other examples there are complete multipartite graphs
Kn1,...,nk

, where ni > 1 for every i ∈ {1, . . . , k} and ecc Kn1,...,nk
= 2.

Theorem 2.2. Let G and H be connected graphs with constant eccentricities ecc G
and ecc H. If ecc G < ecc H, then W (G � H) equals to

1
2 |V (G)|2

∑

h∈V (H)

ecc H∑

j=ecc G+1
jsH

j (h)

+ 1
2

∑

(g,h)∈V (G�H)

ecc G∑

j=1

[
jsG

j (g)nH
j [h] + jsH

j (h)nG
j [g]− jsG

j (g)sH
j (h)

]

and if ecc G = ecc H, then W (G � H) equals to

1
2

∑

(g,h)∈V (G�H)

ecc G∑

j=1

[
jsG

j (g)nH
j [h] + jsH

j (h)nG
j [g]− jsG

j (g)sH
j (h)

]
.
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3. PROOF OF THEOREM 2.1

We first compute W G�H((g, h)) which is
∑ecc (g,h)

i=1 isG�H
i (g, h). It is well known that

NG�H
i [g, h] is a subproduct of NG

i [g]×NH
i [h]. Since

SG�H
i (g, h) = NG�H

i [g, h]−NG�H
i−1 [g, h],

we have that

SG�H
i (g, h) = (SG

i (g)×NH
i [h]) ∪ (NG

i [g]× SH
i (h)).

Moreover, the intersection of both sets from above union is exactly SG
i (g)× SH

i (h).
Hence we have that

W G�H((g, h)) =
ecc (g,h)∑

i=1
isG�H

i (g, h)

=
ecc (g,h)∑

i=1
i
[
sG

i (g)nH
i [h] + sH

i (h)nG
i [g]− sG

i (g)sH
i (h)

]
.

Let

A =
ecc (g,h)∑

i=1
isG

i (g)nH
i [h],

B =
ecc (g,h)∑

i=1
isH

i (h)nG
i [g]

and

C =
ecc (g,h)∑

i=1
isG

i (g)sH
i (h).

Next we take more closer look at the A, B and C. For this, notice that nG
i [g] =∑i

j=0 sG
j (g) and similar nH

i [h] =
∑i

j=0 sH
j (h). For A we have that

A =
ecc (g,h)∑

i=1
isG

i (g)nH
i [h] =

ecc g∑

i=1
isG

i (g)
i∑

j=0
sH

j (h)

=
ecc g∑

j=0
sH

j (h)
ecc g∑

i=j

isG
i (g) =

ecc g∑

j=0
sH

j (h)
(ecc g∑

i=1
isG

i (g)−
j−1∑

i=1
isG

i (g)
)

=
ecc g∑

j=0
sH

j (h)
(
W G(g)−W G

j−1(g)
)

= W G(g)
ecc g∑

j=0
sH

j (h)−
ecc g∑

j=2
sH

j (h)W G
j−1(g).
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Here W G
−1(g) = W G

0 (g) = 0 and the sum can go up to ecc g, since sG
i (g) = 0 for every

i > ecc g. Notice also that the correctness of exchange of order of i and j (from the
second to the third line of above computation) can be seen by depicting these in Z×Z
where one coordinate represents i and the other j. Analogue computation can be done
for B:

B =
ecc (g,h)∑

i=1
isH

i (h)nG
i [g] = W H(h)

ecc h∑

j=0
sG

j (g)−
ecc h∑

j=2
sG

j (g)W H
j−1(h).

In particular, notice that
∑ecc h

j=0 sG
j (g) = |V (G)| whenever ecc h ≥ ecc g and analogue∑ecc g

j=0 sH
j (h) = |V (H)| whenever ecc h ≤ ecc g. Also C can be adjusted as follows:

C =
ecc (g,h)∑

i=1
isG

i (g)sH
i (h) =

min∑

i=1
isG

i (g)sH
i (h),

since either sG
i (g) = 0 or sH

i (h) = 0 for every i > min. We have proved the following:

W G�H((g, h)) = W G(g)
ecc g∑

j=0
sH

j (h) + W H(h)
ecc h∑

j=0
sG

j (g)

−




ecc g∑

j=2
sH

j (h)W G
j−1(g) +

ecc h∑

j=2
sG

j (g)W H
j−1(h) +

min∑

i=1
isG

i (g)sH
i (h)




and the proof of Theorem 2.1 is completed by (2.1).

4. PROOF OF THEOREM 2.2

Let G and H be connected graphs with constant eccentricities ecc G and ecc H and
let ecc G ≤ ecc H. We split the general result of Theorem 2.1 in the following three
parts for easier computation:

D = 1
2

∑

(g,h)∈V (G�H)

W G(g)
ecc g∑

j=0
sH

j (h),

E = 1
2

∑

(g,h)∈V (G�H)

W H(h)
ecc h∑

j=0
sG

j (g),

F = 1
2

∑

(g,h)∈V (G�H)

(ecc g∑

i=2
sH

i (h)W G
i−1(g) +

ecc h∑

i=2
sG

i (g)W H
i−1(h) +

min∑

i=1
isG

i (g)sH
i (h)

)
.
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Since every vertex of G has the constant eccentricity ecc G, we can simplify D
as follows:

D = 1
2

∑

(g,h)∈V (G�H)

W G(g)
ecc g∑

j=0
sH

j (h) = 1
2


 ∑

h∈V (H)

ecc G∑

j=0
sH

j (h)




 ∑

g∈V (G)

W G(g)




= W (G)


 ∑

h∈V (H)

ecc G∑

j=0
sH

j (h)


 = W (G)

∑

h∈V (H)

nH
ecc G[h].

Also every vertex of H has constant eccentricity ecc H and we have symmetrically

E = W (H)
∑

g∈V (G)

nG
ecc H [g].

Moreover, since ecc G ≤ ecc H, we have that

E = W (H)
∑

g∈V (G)

|V (G)| = W (H)|V (G)|2.

Next we concentrate on F . Recall that W G
0 (g) = 0 = W H

0 (h), that sG
i (g) = 0 for

i > ecc G and that ecc G ≤ ecc H and we can write

F = 1
2

∑

(g,h)∈V (G�H)

ecc G∑

i=1

[
sH

i (h)W G
i−1(g) + sG

i (g)W H
i−1(h) + isG

i (g)sH
i (h)

]

= 1
2

∑

(g,h)∈V (G�H)

ecc G∑

i=1

[
sH

i (h)(W G
i−1(g) + isG

i (g))

+ sG
i (g)(W H

i−1(h) + isH
i (h)− isH

i (h))
]

= 1
2

∑

(g,h)∈V (G�H)

ecc G∑

i=1

[
sH

i (h)W G
i (g) + sG

i (g)W H
i (h)− isG

i (g)sH
i (h)

]
.

We now split F to F1, F2 and F3, where F3 = F − F1 − F2 for

F1 = 1
2

∑

(g,h)∈V (G�H)

ecc G∑

i=1
sH

i (h)W G
i (g),

F2 = 1
2

∑

(g,h)∈V (G�H)

ecc G∑

i=1
sG

i (g)W H
i (h).
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For F1 we have that

F1 = 1
2

∑

(g,h)∈V (G�H)

ecc G∑

i=1
sH

i (h)
i∑

j=1
jsG

j (g)

= 1
2

∑

(g,h)∈V (G�H)

ecc G∑

j=1
jsG

j (g)
ecc G∑

i=j

sH
i (h)

= 1
2

∑

(g,h)∈V (G�H)

ecc G∑

j=1
jsG

j (g)
[
nH

ecc G[h]− nH
j−1[h]

]

= 1
2

∑

(g,h)∈V (G�H)


nH

ecc G[h]W G(g)−
ecc G∑

j=1
jsG

j (g)nH
j−1[h]




= W (G)
∑

h∈V (H)

nH
ecc G[h]− 1

2
∑

(g,h)∈V (G�H)

ecc G∑

j=1
jsG

j (g)nH
j−1[h].

By comutativity of computation we get for F2 that

F2 = 1
2

∑

(g,h)∈V (G�H)

ecc G∑

j=1
jsH

j (h)
[
nG

ecc G[g]− nG
j−1[g]

]
,

which is a third line of computation of F1. Notice that if ecc G < ecc H, we can not
continue as in the case of computation of F1. However we have that

F2 = 1
2

∑

(g,h)∈V (G�H)

ecc G∑

j=1
jsH

j (h)
[
|V (G)| − nG

j−1[g]
]

= 1
2 |V (G)|2

∑

h∈V (H)

ecc G∑

j=1
jsH

j (h)− 1
2

∑

(g,h)∈V (G�H)

ecc G∑

j=1
jsH

j (h)nG
j−1[g].
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Now we have
W (G � H) = D + E − F

= W (H)|V (G)|2 − 1
2 |V (G)|2

∑

h∈V (H)

ecc G∑

j=1
jsH

j (h)

+ 1
2

∑

(g,h)∈V (G�H)

ecc G∑

j=1

[
jsG

j (g)nH
j−1[h] + jsH

j (h)nG
j−1[g] + jsG

j (g)sH
j (h)

]

= 1
2 |V (G)|2

∑

h∈V (H)




ecc H∑

j=1
jsH

j (h)−
ecc G∑

j=1
jsH

j (h)




+ 1
2

∑

(g,h)∈V (G�H)

ecc G∑

j=1

[
jsG

j (g)nH
j [h] + jsH

j (h)nG
j [g]− jsG

j (g)sH
j (h)

]

= 1
2 |V (G)|2

∑

h∈V (H)

ecc H∑

j=ecc G+1
jsH

j (h)

+ 1
2

∑

(g,h)∈V (G�H)

ecc G∑

j=1

[
jsG

j (g)nH
j [h] + jsH

j (h)nG
j [g]− jsG

j (g)sH
j (h)

]

and the first statement of Theorem 2.2 is proved. However, if ecc G = ecc H, then
the above result clearly simplifies to

W (G � H) = 1
2

∑

(g,h)∈V (G�H)

ecc G∑

j=1

[
jsG

j (g)nH
j [h] + jsH

j (h)nG
j [g]− jsG

j (g)sH
j (h)

]
,

which proves also the second statement of Theorem 2.2.

5. SOME SPECIAL CLASSES

Theorem 2.1 can be used to obtain the Wiener index of the strong product of a connec-
ted graph with a complete graph, the result already known [16] and therefore omitted
here. In this section we apply Theorem 2.2 for the calculation of the strong product of
a connected graph of constant eccentricity with a cycle. Only the Wiener index of two
cycles can be found in literature [2,13], which is a special subfamily of our family. The
method used there is again a direct computation, while the use of Theorem 2.2 yields
much more general result and more elegant proof. We also cover a small error from
[13] for a case of the strong product of an odd and an even cycle.

Since it is relevant to us, we first give closed formulas for the Wiener and the
hyper-Wiener index of cycles. Closed formulas for the Wiener index of cycles are well
known:

W (Cn) =
{

(n−1)n(n+1)
8 , n odd,

n3

8 , n even.
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The hyper-Wiener index for cyclic graphs was introduced by Klein et al. [12] as

WW (G) = 1
2W (G) + 1

2

ecc G∑

j=1
j2d(G, j),

where d(G, j) is the number of pairs of vertices from G at distance j. A straightforward
calculation yields the hyper-Wiener index of cycles

WW (Cn) =
{

n(n+1)(n−1)(n+3)
48 , n odd,

n2(n+1)(n+2)
48 , n even.

The direct consequence of the definition is the relation

∑

g∈V (G)

ecc G∑

j=1
j2sG

j (g) = 4WW (G)− 2W (G). (5.1)

We have to distinguish two cases, one for the strong product of a graph G with
the constant eccentricity with an odd cycle and another case for an even cycle.

5.1. W (G � C2k+1)

To use Theorem 2.2 efficiently we must add an assumption that ecc G ≤ k when
computing W (G�C2k+1). The reason for this is that s

C2k+1
j (v) = 2 for every 1 ≤ j ≤ k,

but we have in general no information about sG
j (v).

Theorem 5.1. Let G be a graph with the constant eccentricity ecc G. If ecc G ≤ k,
then

W (G � C2k+1) = (2k + 1)
[
|V (G)|2 k(k + 1)

2 + 2WW (G)−W (G)
]

.

Proof. It is easy to see that ecc C2k+1 = k and that for every vertex v of C2k+1
s

C2k+1
j (v) = 2 and n

C2k+1
j [v] = 2j + 1 for j ∈ {1, . . . , k}. Let G be a graph with
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the constant eccentricity ecc G ≤ k. For the computation of W (G � C2k+1) we need
the following derivation:

∑

g∈V (G)

ecc G∑

j=1
jnG

j [g]

=
∑

g∈V (G)

ecc G∑

j=1
j

(
1 +

j∑

i=1
sG

i (g)
)

=
∑

g∈V (G)

ecc G∑

j=1
j +

∑

g∈V (G)

ecc G∑

i=1
sG

i (g)
ecc G∑

j=i

j

= 1
2 |V (G)|ecc G(ecc G + 1) + 1

2
∑

g∈V (G)

ecc G∑

i=1
sG

i (g)(ecc2G + ecc G− i2 + i)

= 1
2ecc G(ecc G + 1)

[
|V (G)|+ |V (G)|2 − |V (G)|

]

+ 1
2
∑

g∈V (G)

ecc G∑

i=1

[
−i2sG

i (g) + isG
i (g)

]

= 1
2ecc G(ecc G + 1)|V (G)|2 + W (G)− 1

2
∑

g∈V (G)

ecc G∑

i=1
i2sG

i (g).

(5.2)

Using Theorem 2.2 and then derivation (5.2) and formula (5.1) we obtain

W (G � C2k+1) = 1
2 |V (G)|2

∑

h∈V (C2k+1)

[
k∑

j=1
2j −

ecc G∑

j=1

]

+ 1
2

∑

(g,h)∈V (G�C2k+1)

ecc G∑

j=1

[
jsG

j (g)(2j + 1) + 2jnG
j [g]− 2jsG

j (g)
]

= |V (G)|2(2k + 1)
[

k(k + 1)
2 − ecc G(ecc G + 1)

2

]

+ (2k + 1)
[ ∑

g∈V (G)

ecc G∑

j=1

[
j2sG

j (g)− 1
2jsG

j (g)
]]

+(2k + 1)
[

ecc G(ecc G + 1)
2 |V (G)|2 + W (G)

− 1
2
∑

g∈V (G)

ecc G∑

i=1
i2sG

i (g)
]
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= (2k + 1)
[
|V (G)|2 k(k + 1)

2 + W (G) + 1
2
∑

g∈V (G)

ecc G∑

j=1

[
j2sG

j (g)− jsG
j (g)

]
]

= (2k + 1)
[
|V (G)|2 k(k + 1)

2 + 1
2
∑

g∈V (G)

ecc G∑

j=1
j2sG

j (g)
]

= (2k + 1)
[
|V (G)|2 k(k + 1)

2 + 2WW (G)−W (G)
]

,

which completes the proof.

Next two corollaries follows from Theorem 5.1 and the implementation of closed
formulas for the Wiener and the hyper-Wiener index for cycles.

Corollary 5.2. Let k and ` be two positive integers. If ` ≤ k, then

W (C2` � C2k+1) = 1
3(2k + 1)`2 (2k2 + 2k + 2`2 + 1

)
.

Corollary 5.3. Let k and ` be two positive integers. If ` ≤ k, then

W (C2`+1 � C2k+1) = 1
6(2k + 1)(2` + 1)2 (3k2 + 3k + `2 + `

)
.

5.2. W (G � C2`)

The condition needed by odd cycles must be even stronger in the case of even cycles.
Namely, we have sC2`

` (v) = 1 and nC2`

` [v] = 2`, which yields some complications
computing W (G�C2`) when ecc G = `. Therefore we restrict ourselves to graphs with
the constant eccentricity ecc G < `.

Theorem 5.4. Let G be a graph with the constant eccentricity ecc G. If ecc G < `,
then

W (G � C2`) = 2`

[
|V (G)|2 `2

2 + 2WW (G)−W (G)
]

.

Proof. Let G be a graph with the constant eccentricity ecc G < `. As already mentioned,
we have two irregularities sC2`

` (v) = 1 and nC2`

` [v] = 2`, but otherwise we have
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ecc C2` = `, sC2`
j (v) = 2 and that nC2`

j [v] = 2j + 1 for every vertex v of C2` and every
j ∈ {1, . . . , `− 1}. Similarly as in the odd case we get

W (G � C2`) = 1
2 |V (G)|2

∑

h∈V (C2`)


∑̀

j=1
2j −

ecc G∑

j=1
2j − `




+ 1
2

∑

(g,h)∈V (G�C2`)

ecc G∑

j=1

[
jsG

j (g)(2j + 1) + 2jnG
j [g]− 2jsG

j (g)
]

= |V (G)|22`

[
`(` + 1)

2 − ecc G(ecc G + 1)
2 − `

2

]
+

+ 2`


 ∑

g∈V (G)

ecc G∑

j=1

[
j2sG

j (g)− 1
2jsG

j (g)
]


+ 2`


ecc G(ecc G + 1)

2 |V (G)|2 + W (G)− 1
2
∑

g∈V (G)

ecc G∑

i=1
i2sG

i (g)




= 2`


|V (G)|2 `2

2 + W (G) + 1
2
∑

g∈V (G)

ecc G∑

j=1

[
j2sG

j (g)− jsG
j (g)

]



= 2`


|V (G)|2 `2

2 + 1
2
∑

g∈V (G)

ecc G∑

j=1
j2sG

j (g)




= 2`

[
|V (G)|2 `2

2 + 2WW (G)−W (G)
]

,

which completes the proof.

Next corollaries follows from Theorem 5.4 and the implementation of closed formulas
for the Wiener and the hyper-Wiener index for cycles.
Corollary 5.5. Let k and ` be two positive integers. If k ≤ `, then

W (C2k � C2`) = 2
3`k2 (6`2 + 2k2 + 1

)
.

Proof. For k < ` Corollary 5.5 follows directly from Theorem 5.4 and the case of equal
eccentricities is a straightforward use of Theorem 2.2.

Corollary 5.6. Let k and ` be two positive integers. If k < `, then

W (C2k+1 � C2`) = 1
3(2k + 1)2`

(
k2 + k + 3`2) .

Note that the last result was not covered in [13] since the author did not distinguish
possibilities ` > k and ` ≤ k in the derivation of the closed formula for the Wiener
index of C2` � C2k+1.
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