PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Stochastic Wiener filter in the white noise space

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
. In this paper we introduce a new approach to the study of filtering theory by allowing the system's parameters to have a random character. We use Hida's white noise space theory to give an alternative characterization and a proper generalization to the Wiener filter over a suitable space of stochastic distributions introduced by Kondratiev. The main idea throughout this paper is to use the nuclearity of this space in order to view the random variables as bounded multiplication operators (with respect to the Wick product) between Hilbert spaces of stochastic distributions. This allows us to use operator theory tools and properties of Wiener algebras over Banach spaces to proceed and characterize the Wiener filter equations under the underlying randomness assumptions.
Rocznik
Strony
323--339
Opis fizyczny
Bibliogr. 25 poz.
Twórcy
autor
  • Schmid College of Science and Technology Chapman University One University Drive Orange, California 92866, USA
autor
  • Department of Mathematics Ben-Gurion University of the Negev P.O. Box 653, Beer-Sheva 84105, Israel
Bibliografia
  • [1] D. Alpay, D. Levanony, Linear stochastic systems: a white noise approach, Acta Appl. Math. 110 (2010) 2, 545-572.
  • [2] D. Alpay, D. Levanony, A. Pinhas, Linear stochastic state space theory in the white noise space setting, SIAM Journal of Control and Optimization 48 (2010), 5009-5027.
  • [3] D. Alpay, O. Timoshenko, D. Volok, Caratheodory functions in the Banach space setting, Linear Algebra Appl. 425 (2007), 700-713.
  • [4] D. Alpay, H. Attia, S. Ben-Porat, D. Volok, Spectral factorization in the non-stationary Wiener algebra, arXiv:math/0312193 (2003).
  • [5] P. Ga§par, L. Popa, Stochastic mappings and random distribution fields III. Module propagators and uniformly bounded linear stationarity, J. Math. Anal. Appl. 435 (2016) 2, 1229-1240.
  • [6] I. Gohberg, Ju. Leiterer, General theorems on the factorization of operator-valued functions with respect to a contour. I. Holomorphic functions, Acta Sci. Math. (Szeged) 34 (1973), 103-120.
  • [7] I. Gohberg, Ju. Leiterer, General theorems on the factorization of operator-valued functions with respect to a contour. II. Generalizations, Acta Sci. Math. (Szeged) 35 (1973), 39-59.
  • [8] I. Gohberg, M.A. Kaashoek, H.J. Woerdeman, The band method for positive and strictly contractive extension problems: an alternative version and new applications, Integral Equations Operator Theory 12 (1989) 3, 343-382.
  • [9] J. Górniak, A. Weron, Aronszajn-Kolmogorov type theorems for positive definite kernels in locally convex spaces, Studia Math. 69 (1980/81) 3, 235-246.
  • [10] I.M. Guelfand, G.E. Shilov, Les distributions. Tome 2. Collection Universitaire de Mathematiques, no. 15. Dunod, Paris, 1964.
  • [11] I.M. Guelfand, N.Y. Vilenkin, Les distributions. Tome Ą: Applications de I'analyse harmonique, Collection Universitaire de Mathematiques, no. 23. Dunod, Paris, 1967.
  • [12] B. Hassibi, A.H. Sayed, T. Kailath, Linear estimation in Krein spaces - part I: Theory, IEEE Trans. Automat. Control 41 (1996) 1, 18-33.
  • [13] H. Holden, B. 0ksendal, J. Ub0e, T. Zhang, Stochastic Partial Differential Equations, Probability and its Applications, Birkhauser Boston Inc., Boston, MA, 1996.
  • [14] S.A. Kassam, T.L. Lim, Robust Wiener filters, Journal of the Franklin Institute 304 (1977) 4, 171-185.
  • [15] S.A. Kassam, H.V. Poor, Robust techniques for signal processing: A survey, Proceedings of the IEEE 73 (1985) 3, 433-481.
  • [16] Yu.G. Kondratiev, P. Leukert, L. Streit, Wick calculus in Gaussian analysis, Acta Appl. Math. 44 (1996) 3, 269-294.
  • [17] P. Masani, Dilations as propagators of Hilbertian varieties, SIAM J. Math. Anal. 9 (1978) 3, 414-456.
  • [18] F. Mertens, Ein beitrag zur analytischen Zahlentheorie, Journal fur die reine und angewandte Mathematik 78 (1874), 46-62.
  • [19] A.G. Miamee, On B(X, K)-valued stationary stochastic processes, Indiana Univ. Math. J. 25 (1976) 10, 921-932.
  • [20] A.G. Miamee, H. Salehi, Factorization of positive operator valued functions on a Banach space, Indiana Univ. Math. J. 24 (1974/75), 103-113.
  • [21] R.A. Minlos, Generalized random processes and their extension to a measure, Selected Transl. Math. Statist, and Prob., vol. 3, Amer. Math. Soc, Providence, R.I., 1963, pp. 291-313.
  • [22] H. Poor, On robust Wiener filtering, IEEE Transactions on Automatic Control 25 (1980) 3, 531-536.
  • [23] R.M. Rosenberg, An organization of classical particle mechanics, J. Franklin Inst. 313 (1982) 3, 149-164.
  • [24] H.S. Vastola, H.V. Poor, Robust Wiener-Kolmogorov theory, IEEE Transactions on Information Theory 30 (1984) 2, 316-327.
  • [25] N. Wiener, Extrapolation, Interpolation, and Smoothing of Stationary Time Series, vol. 2, MIT Press Cambridge, MA, 1949.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-99a08e94-35a9-4e71-b1ea-4a8de789a982
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.