PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Investigation of factors affecting dose-area product during single-vessel percutaneous coronary intervention at the General Hospital of Ioannina „CHATZIKOSTA”

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Introduction: To process and analyze radiation exposure data from a patient population that underwent single-vessel percutaneous coronary interventions. Materials and Methods: Dose-area product, fluoroscopy time and number of cineangiography frames were retrospectively collected from 289 patients between January 8, 2021 and February 20, 2023, and their medians were compared with the established national and international diagnostic reference levels. Several patient-, disease-, and procedure-related variables were analyzed in a multiple linear regression statistical model with a dose-area product as the primary endpoint. Results: The present dose-area product data exceeded most of the proposed diagnostic reference levels (1.8 to 3.0 times higher than the updated European benchmarks), while the opposite trend was observed for fluoroscopy time and cineangiography frames. Through multivariate analysis, each 5 units increase in body mass index led to a 1.17-fold change in dose-area product (95% confidence interval: 1.13 to 1.20); female dose-area product was lower than male (0.83, 95% confidence interval: 0.78 to 0.89); elective (vs ad-hoc) procedures were associated with a decrease in dose-area product (0.88, 95% confidence interval: 0.82 to 0.95); treating complex (vs simple) lesions increased dose-area product by a factor of 1.15 (95% confidence interval: 1.07 to 1.24); each two minute rise in fluoroscopy time conferred a 1.08-fold change in dose-air product (95% confidence interval: 1.07 to 1.09). Conclusions: Elevated dose-area product underscores the need for investigation. Multivariate analysis demonstrated that higher bone-mass index, male gender, procedural complexity, ad-hoc percutaneous coronary interventions and fluoroscopy time were associated with the highest increase in dose-area product.
Rocznik
Strony
39--50
Opis fizyczny
Bibliogr. 54 poz., rys., tab.
Twórcy
  • Department of Medical Physics, General Hospital of Ioannina „CHATZIKOSTA”, Ioannina, Greece
  • Haemodynamics Laboratory, Cardiology Clinic, General Hospital of Ioannina „CHATZIKOSTA”, Ioannina, Greece
autor
  • Haemodynamics Laboratory, Cardiology Clinic, General Hospital of Ioannina „CHATZIKOSTA”, Ioannina, Greece
  • Department of Economics, General Hospital of Ioannina „CHATZIKOSTA”, Ioannina, Greece
autor
  • Haemodynamics Laboratory, Cardiology Clinic, General Hospital of Ioannina „CHATZIKOSTA”, Ioannina, Greece
  • Haemodynamics Laboratory, Cardiology Clinic, General Hospital of Ioannina „CHATZIKOSTA”, Ioannina, Greece
Bibliografia
  • 1. Siiskonen T, Ciraj-Bjelac O, Dabinc J, et al. Establishing the European diagnostic reference levels for interventional cardiology. Phys Med. 2018;54:42-48. https://doi.org/10.1016/j.ejmp.2018.09.012
  • 2. Ho TL, Shieh SH, Lin CL, Shen WC, Kao CH. Risk of cancer among cardiologists who frequently perform percutaneous coronary interventions: a population-based study. Eur J Clin Invest. 2016;46:527-534. https://doi.org/10.1111/eci.12628
  • 3. Purohit E, Karimipour D, Madder RD. Multiple cutaneous cancers in an interventional cardiologist: Predominance in unprotected skin nearest the radiation source. Cardiovasc Revasc Med. 2021;28:206-207. https://doi.org/10.1016/j.carrev.2021.01.029
  • 4. Srimahachota S, Udayachalerm W, Kupharang T, et al. Radiation skin injury caused by percutaneous coronary intervention, report of 3 cases. Int J Cardiol. 2012;154:e31-e33. https://doi.org/10.1016/j.ijcard.2011.05.016
  • 5. Lai CC, Wei KC, Chen WY, et al. Risk Factors For Radiation-Induced Skin Ulceration in Percutaneous Coronary Interventions of Chronic Total Occluded Lesions: A 2-Year Observational Study. Sci Rep. 2017;7:8408. https://doi.org/10.1038/s41598-017-08945-4
  • 6. Tseng YT, Yu YC, Cheng IN, et al. Percutaneous Coronary Intervention-Related Radiation Ulcer: Diagnosis, Management, and Prevention Strategy. Acta Cardiol Sin. 2023;39:480-487. https://doi.org/10.6515/acs.202305_39(3).20221219a
  • 7. ICRP 2017. Diagnostic reference levels in medical imaging. ICRP Publication 135. Ann ICRP 46(1). https://doi.org/10.1177/0146645317717209
  • 8. Aroua A, Rickli H, Stauffer JC, et al. How to set up and apply reference levels in fluoroscopy at a national level. Eur Radiol. 2007;17:1621-1633. https://doi.org/10.1007/s00330-006-0463-3
  • 9. Bogaert E, Bacher K, Lemmens K, et al. A large-scale multicentre study of patient skin doses in interventional cardiology: dose-area product action levels and dose reference levels. Br J Radiol. 2009;82:303-312. https://doi.org/10.1259/bjr/29449648
  • 10. Hart D, Hillier MC, Wall BF. National reference doses for common radiographic, fluoroscopic and dental X-ray examinations in the UK. Br J Radiol. 2009;82: 1-12. https://doi.org/10.1259/bjr/12568539
  • 11. Brnić Z, Krpan T, Faj D, et al. Patient radiation doses in the most common interventional cardiology procedures in Croatia: first results. Radiat Prot Dosim. 2010;138:180-186. https://doi.org/10.1093/rpd/ncp237
  • 12. Miller DL, Hilohi CM, Spelic DC. Patient radiation doses in interventional cardiology in the U.S.: Advisory data sets and possible initial values for U.S. reference levels. Med Phys. 2012;39:6276-6286. https://doi.org/10.1118/1.4754300
  • 13. Zotova R, Vassileva J, Hristova J, Pirinen M, Järvinen H. A national patient dose survey and setting of reference levels for interventional radiology in Bulgaria. Eur Radiol. 2012;22:1240-1249. https://doi.org/10.1007/s00330-012-2386-5
  • 14. Simantirakis G, Koukorava C, Kalathaki M, et al. Reference levels and patient doses in interventional cardiology procedures in Greece. Eur Radiol. 2013;23:2324-2332. https://doi.org/10.1007/s00330-013-2813-2
  • 15. Crowhurst JA, Whitby M, Thiele D, et al. Radiation dose in coronary angiography and intervention: initial results from the establishment of a multi-centre diagnostic reference level in Queensland public hospitals. J Med Radiat Sci. 2014;61:135-141. https://doi.org/10.1002/jmrs.67
  • 16. Säteilyturvakeskus (STUK) Päätös 15/3020/2016. Potilaan säteilyaltistuksen vertailutasot kardiologisessa radiologiassa. Helsinki, Finland, 2016; http://www.stuk.fi/documents/88234/1106801/Decision-15-3020-2015-Reference-levels-for-the-patientsradiation-exposure-20122016.pdf/18940d29-67bb-eb75-66ae-ae037b699779 [retrieved January 22, 2018].
  • 17. Georges JL, Belle L, Etard C, et al. Radiation Doses to Patients in Interventional Coronary Procedures—Estimation of Updated National Reference Levels by Dose Audit. Radiat Prot Dosim. 2017;175:17-25. https://doi.org/10.1093/rpd/ncw261
  • 18. Widmark A. Technical Report: Diagnostic reference level (DRL) in Norway 2017. Results, revision and establishment of new DRL. NRPA Report 2018:3. Norwegian Radiation Protection Authority. Østerås 2018; https://doi.org/10.13140/RG.2.2.29964.21120
  • 19. Kim JS, Lee BK, Ryu DR, et al. A multicentre survey of local diagnostic reference levels and achievable dose for coronary angiography and percutaneous transluminal coronary intervention procedures in Korea. Radiat Prot Dosim. 2019;187:378-382. https://doi.org/10.1093/rpd/ncz178
  • 20. Schegerer A, Loose R, Heuser LJ, Brix G. Diagnostic Reference Levels for Diagnostic and Interventional X-Ray Procedures in Germany: Update and Handling. Fortschr Röntgenstr. 2019;191:739-751. https://doi.org/10.1055/a-0824-7603
  • 21. Pace E, Cortis K, Debono J, Grech M, Caruana CJ. Establishing local and national diagnostic and interventional cardiology and radiology reference levels in a small European state: the case of Malta. Radiat Prot Dosim. 2020;191:261-271. https://doi.org/10.1093/rpd/ncaa152
  • 22. Sánchez R, Vañó E, Fernández Soto JM, et al. Updating national diagnostic reference levels for interventional cardiology and methodological aspects. Phys Med. 2020;70:169-175. https://doi.org/10.1016/j.ejmp.2020.01.014
  • 23. Subban V, Amelot S, Victor SM, et al. Radiation doses during cardiac catheterisation procedures in India: a multicentre study. Asia Intervention. 2020;6: 25-33. https://doi.org/10.4244/AIJ-D-18-00044
  • 24. Yap EML, Magno LP, Macaraeg CA, et al. Radiation dose in coronary angiography and percutaneous coronary intervention: Establishment of diagnostic reference levels at the Philippine Heart Center. Interv Cardiol Rev. 2021;16:e13. https://doi.org/10.15420/icr.2021.16.PO2
  • 25. Health Information and Quality Authority (HIQA). Diagnostic Reference Levels: Guidance on the establishment, use and review of diagnostic reference levels for medical exposure to ionising radiation. Updated October 2022; https://www.hiqa.ie/sites/default/files/202211/Diagnostic%20Reference%20Levels_Undertaking%20guidance_Oct%202022.pdf
  • 26. Srimahachota S, Krisanachinda A, Roongsangmanoon W, et al. Establishment of national diagnostic reference levels for percutaneous coronary interventions (PCIs) in Thailand. Phys Med. 2022;96:46-53. https://doi.org/10.1016/j.ejmp.2022.02.013
  • 27. Smith IR, Rivers JT. Measures of Radiation Exposure in Cardiac Imaging and the Impact of Case Complexity. Heart Lung Circ. 2008;17:224-231. https://doi.org/10.1016/j.hlc.2007.10.004
  • 28. Miller DL, Balter S, Wagner LK, et al. Quality improvement guidelines for recording patient radiation dose in the medical record. J Vasc Interv Radiol. 2004;15:423-429. https://doi.org/10.1097/01.RVI.0000126814.97605.C6
  • 29. Larrazet F, Dibie A, Philippe F, Palau R, Klausz R, Laborde F. Factors influencing fluoroscopy time and dose-area product values during ad hoc one-vessel percutaneous coronary angioplasty. Brit J Radiol. 2003;76:473-477. https://doi.org/10.1259/bjr/21553230
  • 30. Kuipers G, Delewi R, Velders XL, et al. Radiation Exposure During Percutaneous Coronary Interventions and Coronary Angiograms Performed by the Radial Compared With the Femoral Route. J Am Coll Cardiol Intv. 2012;5:752-757. https://doi.org/10.1016/j.jcin.2012.03.020
  • 31. Delewi R, Hoebers LP, Remunddal T, et al. Clinical and Procedural Characteristics Associated With Higher Radiation Exposure During Percutaneous Coronary Interventions and Coronary Angiography. Circ Cardiovasc Interv. 2013;6:501-506. https://doi.org/10.1161/CIRCINTERVENTIONS.113.000220
  • 32. Faroux L, Blanpain T, Nazeyrollas P, et al. Trends in Patient Exposure to Radiation in Percutaneous Coronary Interventions Over a 10-Year Period. Am J Cardiol. 2017;120:927-930. https://doi.org/10.1016/j.amjcard.2017.06.021
  • 33. Zanca F, Collard C, Alexandre N, et al. Patient exposure data and operator dose in coronary interventional procedures: Impact of body-mass index and procedure complexity. Phys Med. 2020;76:38-43. https://doi.org/10.1016/j.ejmp.2020.05.006
  • 34. Koh Y, Vogrin S, Noaman S, et al. Effect of Different Anthropometric Body Indexes on Radiation Exposure in Patients Undergoing Cardiac Catheterisation and Percutaneous Coronary Intervention. Tomography. 2022;8:2256-2267. https://doi.org/10.3390/tomography8050189
  • 35. Stocker TJ, Abdel-Wahab M, Möllmann H, et al. Trends and predictors of radiation exposure in percutaneous coronary intervention: the PROTECTION VIII study. EuroIntervention. 2022;18:e324-e332. https://doi.org/10.4244/EIJ-D-21-00856
  • 36. Bernardi G, Padovani R, Morocutti G, et al. Clinical and Technical Determinants of the Complexity of Percutaneous Transluminal Coronary Angioplasty Procedures: Analysis in Relation to Radiation Exposure Parameters. Catheter Cardiovasc Interv. 2000;51:1-9. https://doi.org/10.1002/1522-726X(200009)51:1<1::AID-CCD1>3.0.CO;2-K
  • 37. Balter S, Miller DL, Vano E, et al. A pilot study exploring the possibility of establishing guidance levels in x-ray directed interventional procedures. Med Phys. 2008;35:673-680. https://doi.org/10.1118/1.2829868
  • 38. Ryan TJ, Faxon DP, Gunnar RM, et al. Guidelines for percutaneous transluminal coronaryangioplasty. A report of the American College of Cardiology/American Heart Association Task Force on Assessment of Diagnostic and Therapeutic Cardiovascular Procedures (Subcommittee on Percutaneous Transluminal Coronary Angioplasty). Circulation. 1988;78:486-502. https://doi.org/10.1161/01.CIR.78.2.486
  • 39. Fetterly KA, Lennon RJ, Bell MR, Holmes DR Jr, Rihal CS. Clinical determinants of radiation dose in percutaneous coronary interventional procedures: influence of patient size, procedure complexity, and performing physician. JACC Cardiovasc Interv. 2011;4:336-343. https://doi.org/10.1016/j.jcin.2010.10.014
  • 40. Jarvinen H, Farah J, Siiskonen T, et al. Feasibility of setting up generic alert levels for maximum skin dose in fluoroscopically guided procedures. Phys Med. 2018;46:67-74. https://doi.org/10.1016/j.ejmp.2018.01.010
  • 41. Neill J, Douglas H, Richardson G, et al. Comparison of Radiation Dose and the Effect of Operator Experience in Femoral and Radial Arterial Access for Coronary Procedures. Am J Cardiol. 2010;106:936-940. https://doi.org/10.1016/j.amjcard.2010.06.002
  • 42. Verdoia M, Pipan P, Viola O, et al. Impact of Different Measures of Body Size on the Radiation Dose During Coronary Angiography and Percutaneous Coronary Intervention: Results from a Large Single Center Cohort. Angiology. 2022;73:478-484. https://doi.org/10.1177/00033197211053133
  • 43. Saunamaki KI. Radiation protection in the cardiac catheterization laboratory: special focus on the role of the operator. Interv Cardiol. 2010;2:667-672. https://doi.org/10.2217/ica.10.63
  • 44. Sadick V, Reed W, Collins L, Sadick N, Heard R, Robinson J. Impact of biplane versus single-plane imaging on radiation dose, contrast load and procedural time in coronary angioplasty. Brit J Radiol. 2010;83:379-393. https://doi.org/10.1259/bjr/21696839
  • 45. Georges JL, Livarek B, Gibault-Genty G, et al.Reduction of radiation delivered to patients undergoing invasive coronary procedures. Effect of a programme for dose reduction based on radiation-protection training. Arch Cardiovasc Dis. 2009;102:821-827. https://doi.org/10.1016/j.acvd.2009.09.007
  • 46. Roongsangmanoon W, Srimahachota S, Krisanachinda A, Rehani M. Radiation doses to patients in coronary interventions in a hospital in Thailand. Asian Biomed. 2012;6:565-571.
  • 47. Fazel R, Curtis J, Wang Y, et al. Determinants of Fluoroscopy Time for Invasive Coronary Angiography and Percutaneous Coronary Intervention: Insights from the NCDR®. Catheter Cardiovasc Interv. 2013;82:1091-1105. https://doi.org/10.1002/ccd.24996
  • 48. Nikolsky E, Pucelikova T, Mehran R, et al. An evaluation of fluoroscopy time and correlation with outcomes after percutaneous coronary intervention. J Invasive Cardiol. 2007;19:208-213.
  • 49. Chon MK, Chun KJ, Lee DS, et al. Radiation reduction during percutaneous coronary intervention: A new protocol with a low frame rate and selective fluoroscopic image storage. Medicine. 2017;96:30(e7517). https://doi.org/10.1097/MD.0000000000007517
  • 50. Bousis C, Kosovitsas T, Karanikis P, Kotsia A, Tzima E, Pappa E. Dose area product reduction through a practice implementing low frame rate fluoroscopy and increased collimation during single vessel percutaneous coronary interventions. Radiat Prot Environ. 2024; 47:121-128. https://doi.org/10.4103/rpe.rpe_13_24
  • 51. Boland JE, Wang LW, Love BJ, Wynne DG, Muller DWM. Radiation dose during percutaneous treatment of structural heart disease. Heart Lung Circ. 2014;23:1075-83. https://doi.org/10.1016/j.hlc.2014.04.258
  • 52. Jolly SS, Amlani S, Hamon M, Yusuf S, Mehta SR. Radial versus femoral access for coronary angiography or intervention and the impact on major bleeding and ischemic events: a systematic review and meta-analysis of randomized trials. Am Heart J. 2009;157:132-140. https://doi.org/10.1016/j.ahj.2008.08.023
  • 53. Delichas MG, Psarrakos K, Hadjiioannou K, et al. The dependence of patient dose on factors relating to the technique and complexity of Interventional Cardiology procedures. Phys Med. 2005;21:153-157. https://doi.org/10.1016/S1120-1797(05)80004-3
  • 54. Üreyen CM, Coşansu K, Vural MG, et al. Is trans-radial approach related to an increased risk of radiation exposure in patients who underwent diagnostic coronary angiography or percutaneous coronary intervention? (The SAKARYA study). Anatol J Cardiol. 2019;22:5-12. https://doi.org/10.14744/AnatolJCardiol.2019.06013
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-99a036ca-5108-421f-a64c-868d66abd309
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.