Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this study, mechanical properties and microstructures of extruded aluminum matrix composites were investigated. The composite materials were manufactured by two step methods: powder metallurgy (mixture of aluminum powder and carbon fiber using a turbular mixer, pressing of mixed aluminum powder and carbon fiber using a cold isostatic pressing) and hot extrusion of pressed aluminum powder and carbon fiber. For the mixing of Al powder and carbon fibers, aluminum powder was used as a powder with an average particle size of 30 micrometer and the addition of the carbon fibers was 50% of volume. In order to make mixing easier, it was mixed under an optimal condition of turbular mixer with a rotational speed of 60 rpm and time of 1800s. The process of the hot-extrusion was heated at 450°C for 1 hour. Then, it was hot-extruded with a condition of extrusion ratio of 19 and ram speed of 2 mm/s. The microstructural analysis of extruded aluminum matrix composites bars and semi-solid casted alloys were carried out with the optical microscope, scanning electron microscope and X-ray diffraction. Its mechanical properties were evaluated by Vickers hardness and tensile test.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
1267--1270
Opis fizyczny
Bibliogr. 12 poz., rys.
Twórcy
autor
- Recapt, Gyeongsang National Univ., Jinjudaro 501, Jinju, 52828, S. Korea
autor
- Dept. of Manufacturing Processes Graduate School Gyeongsang National Univ., Jinjudaro 501, Jinju, 52828, S. Korea
autor
- Recapt, Gyeongsang National Univ., Jinjudaro 501, Jinju, 52828, S. Korea
- Dept. of Manufacturing Processes Graduate School Gyeongsang National Univ., Jinjudaro 501, Jinju, 52828, S. Korea
Bibliografia
- [1] J. Park, M.W. Shin, C.C. Lee, Optics Letters 29, 22 (2004).
- [2] L. Yang, J. Hu and M.W. Shin, IEEE Electron Device Letters 29, 8 (2008).
- [3] L. Kim, M.W. Shin, IEEE Trans. Component and Packaging Technology 30, 4 (2007)
- [4] K. Shinozaki, A. Tsuge, Characterization Techniques of Ceramics: Development of high Thermal Conductive Aluminum nitride (in JPN), Ceramics, 21 (1986).
- [5] H.L. Lee, S.M. Ha, Y. Yoo, S.-G. Lee, Polymer Science and Technology 24 (1), (2013).
- [6] S.H. Yu, ICHMT 5 (13-14), 1609-1610 (2009).
- [7] H.W. Kang, B.D. Kang, K.S. Park, Kase 51 (3), 12-19 (2008).
- [8] P. Feltham, Metal Treatment 23, 440 (1956) CA 94305, June.
- [9] P.K. Saha, ASM international, Aluminum Extrusion Technology, pp.1-10 (2000.)
- [10] L.J. Matienzo, K.J. Holub, W. Vandatta, Applications of Surface Science 15, 307-320 (1982).
- [11] T. Minoda, H. Hayakawa, S. Matsuda, H. Yoshida, 7th international aluminum extrusion technology seminar, 23-29 (2000).
- [12] K. Kang, H. Park, C. Lee, J. Kor. Inst. Surf. Eng. 45 (1), 1-7 (2012).
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-999c56c4-e24f-420f-b534-59ebdbf09565