
Opuscula Math. 45, no. 1 (2025), 5–25
https://doi.org/10.7494/OpMath.2025.45.1.5 Opuscula Mathematica

GRAPHS WITH ODD AND EVEN DISTANCES
BETWEEN NON-CUT VERTICES

Kateryna Antoshyna and Sergiy Kozerenko

Communicated by Dalibor Fronček

Abstract. We prove that in a connected graph, the distances between non-cut vertices
are odd if and only if it is the line graph of a strong unique independence tree. We then
show that any such tree can be inductively constructed from stars using a simple
operation. Further, we study the connected graphs in which the distances between
non-cut vertices are even (shortly, NCE-graphs). Our main results on NCE-graphs
are the following: we give a criterion of NCE-graphs, show that any bipartite graph
is an induced subgraph of an NCE-graph, characterize NCE-graphs with exactly
two leaves, characterize graphs that can be subdivided to NCE-graphs, and provide
a characterization for NCE-graphs which are maximal with respect to the edge addition
operation.
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1. INTRODUCTION

Despite the well-known characterization of “shortest paths” metrics on vertex sets of
finite connected graphs [8], metric graph theory is a very promising field of research
with its challenges and mesmerizing classes of graphs (see the corresponding survey by
Bandelt and Chepoi [2]).

To motivate the research conducted in this work, we need to recall several definitions.
A set of vertices in a graph is called independent if no two vertices from this set are
adjacent. A graph G is called strong unique independence graph provided it has
a unique maximum independent set A ⊂ V (G) such that its complement V (G)\A is
also independent in G.

In [7] Hopkins and Staton characterized strong unique independence trees (shortly,
SUITs) as trees which have even distances between their leaves. Interestingly, this
class of trees arises from another classical graph construction. Recall that a vertex u in
a connected graph G is called a cut vertex if G − u is disconnected. A connected graph
without cut vertices is called 2-connected. A block in a graph is its maximal 2-connected
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subgraph. These notions give birth to several classical unary graph operators. Namely,
the block graph B(G) of a graph G is the intersection graph on the class of all blocks
in G (see [5]). A closely related construction is called the block-cutpoint-tree bc(G).
Namely, let G be a connected graph. The graph bc(G) has cut vertices and blocks
of G as its vertices with edges of the form {u, B}, where u is a cut vertex, B is a block
in G, and u ∈ V (B). It is fairly easy to prove that for a connected graph G, the graph
bc(G) is indeed a tree. In fact, it turns out that this graph operator produces exactly
SUITs (and vice versa, each SUIT is isomorphic to the block-cutpoint-tree of some
connected graph). Since in a tree, the leaves are exactly the non-cut vertices, SUITs
provide an example of connected graphs with even distances between its non-cut
vertices.

In this work, we study graphs with parity conditions on distances between non-cut
vertices. Namely, a connected graph is called an NCE-graph (NCO-graph) if it has
even (odd) distances between its non-cut vertices. The paper is organized as follows.
After giving basic definitions in Section 2.1, we proceed by stating several well-known
results on block graphs and line graphs in Section 2.2. Then, in Section 2.3, we prove
several auxiliary results which will be used later in the paper.

Our first main result consists of characterizing NCO-graphs which turned out to be
exactly the line graphs of SUITs (see Theorem 3.1). We then conclude Section 3.1 with
the inductive construction of SUITs from stars using a simple operation (Theorem 3.3).

In Section 3.2 we at first prove the key observation that NCE-graphs are bipartite
(Theorem 3.4) and then use this result to present a criterion for NCE-graphs in
Corollary 3.5. We also show that any bipartite graph can be embedded as an induced
subgraph of an NCE-graph (Corollary 3.6) and characterize induced subgraphs of
NCO-graphs (Corollary 3.9). After we noticed that every non-trivial NCE-graph has
at least two leaves, we present a complete characterization of NCE-graphs with exactly
two leaves (Theorem 3.13). Further, in Proposition 3.14 we characterize graphs that
can be subdivided to NCE-graphs. Finally, Theorem 3.16 proposes a criterion for
NCE-graphs which are maximal relative to the operation of adding edges.

We note that some of the results from this paper were announced at International
Conference of Young Mathematicians [1] in 2023.

2. DEFINITIONS AND PRELIMINARY RESULTS

2.1. BASIC DEFINITIONS

In this paper, all graphs are assumed to be finite and simple. That is, by a graph G
we mean an ordered pair (V, E), where V = V (G) is a finite set (elements of which
are called vertices) and E = E(G) is a set of some 2-element subsets of V (G) (which
are called edges). Instead of {u, v} ∈ E(G) we will write uv ∈ E(G). And in this case,
we say that the vertices u, v are adjacent.

The neighborhood of a vertex u ∈ V (G) is the set NG(u) = {v ∈ V (G) : uv ∈ E(G)}.
The degree of u is the number dG(u) = |NG(u)|. A vertex u ∈ V (G) is called a leaf
provided dG(u) = 1, while the corresponding unique vertex from NG(u) is called the
support vertex of u. A vertex which is not a leaf will be called an inner vertex.
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We say that a graph H is a subgraph of a graph G if V (H) ⊂ V (G) and
E(H) ⊂ E(G). A subgraph H of G is called induced provided E(H) = E(G) ∩

(
V (H)

2
)
.

By G[A] we denote the subgraph of G induced by A ⊂ V (G).
The join operation takes two graphs G, H and produces the new graph G + H

with
V (G + H) = V (G) ⊔ V (H)

and
E(G + H) = E(G) ∪ E(H) ∪ {uv : u ∈ V (G), v ∈ V (H)}.

Definition 2.1. Having an edge subset E′ ⊂ E(G), consider the new graph Sub(G, E′)
which has the vertex set V (G)⊔{xe : e ∈ E′} and the edge set (E(G)\E′)∪(

⋃{uxe, xev :
uv ∈ E′}). We say that Sub(G, E′) is obtained from G by the subdivision of edges
from E′. Further, a graph H is called a subdivision of G, if there is E′ ⊂ E(G) with
Sub(G, E′) ≃ H.

Remark 2.2. We emphasize that by fixing the set E′ from the start, we do not allow
multiple subdivisions of the same edges in G (although, the corresponding graphs from
these multiple subdivisions of edges in G can be obtained after iterations of our graph
operator Sub).

A set of vertices A ⊂ V (G) in a graph G is called dominating provided for any
u ∈ V (G)\A there is a ∈ A with au ∈ E(G). A set A ⊂ V (G) is called independent if no
two vertices from A are adjacent in G. A maximum independent set is an independent
set having the largest cardinality.

A graph is called bipartite if its vertex set can be partitioned into two independent
subsets (each called a part). Any such a partition is called its bipartition. Note that
any connected bipartite graph has a unique bipartition (up to permutation of parts).
A complete bipartite graph is a bipartite graph in which there is an edge between every
two vertices from different parts. By Km,n we denote the complete bipartite graph
having parts of cardinalities m, n.

A tree is a connected acyclic graph. It is clear that every tree is a bipartite graph.
A star is a complete bipartite graph K1,n for n ∈ N.

A graph G is called strong unique independence graph provided it has a unique
maximum independent set A ⊂ V (G) such that its complement V (G)\A is also
independent in G. It is easy to see that strong unique independence graphs are
bipartite. Throughout this paper, strong unique independence trees will be simply
called SUITs. The following result provides a metric characterization of SUITs.

Theorem 2.3 ([7, Theorem 3]). A tree T is a SUIT if and only if the distance between
any two leaves in T is even.

2.2. BLOCK GRAPHS AND LINE GRAPHS

A graph is connected if it contains a path between every pair of its vertices. A connected
component in a graph is its maximal connected subgraph. A vertex in a graph G is
a cut vertex if its deletion from G increases the number of connected components.
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We say that a vertex u separates two vertices x, y provided x, y lie in the same
connected component in G, but in different connected components in G − u. Clearly,
a vertex is a cut vertex if and only if it separates some pair of vertices. Similarly, an
edge is called a bridge if its deletion increases the number of connected components.

A graph is called 2-connected if it has no cut vertices. A block in a graph is its
maximal 2-connected subgraph.

Lemma 2.4 ([6, Theorem 3.3]). In a graph, two vertices lie in the same block with at
least three vertices if and only if they lie on a common simple cycle.

The block graph B(G) of a graph G is the intersection graph on the collection of
blocks in G. In other words, the vertices of B(G) correspond to the blocks in G with
two blocks being adjacent provided they share a common vertex (which must be a cut
vertex in G). An abstract graph H is called a block graph if it is isomorphic to B(G)
for some G. The next characterization of block graphs is often used as their definition.

Theorem 2.5 ([5, Theorems 1 and 2]). A graph H is a block graph if and only if
every block in H is a complete subgraph.

Note that Theorem 2.5 immediately asserts that any tree is a block graph.
There is another approach which leads to SUITs that is closely related to the

construction of block graphs. Namely, for a connected graph G we consider the graph
bc(G) having the cut vertices and blocks in G as its vertices, and two vertices being
adjacent provided one of them is a cut vertex u in G and another is a block B in G
which contains u. The graph bc(G) is called the block-cutpoint-tree of G. It turns out,
that the image of this graph operator consist exactly of SUITs.

Theorem 2.6 ([6, Theorem 4.4]). For a graph H, there exists a connected graph G
with bc(G) ≃ H if and only if H is a SUIT.

The line graph L(G) of a given graph G is the intersection graph on the collection
of edges E(G). In other words, the vertices of L(G) correspond to the edges of G
with two edges being adjacent if they share a common vertex. A well-known Whitney
isomorphism theorem [10] states that two connected graphs G and H are isomorphic
if and only if L(G) and L(H) are isomorphic, unless {G, H} = {K3, K1,3}. We will
use the next characterization of line graphs of trees.

Proposition 2.7 ([6, Theorem 8.5]). A graph is the line graph of a tree if and only if
it is a connected block graph in which each cut vertex lies in exactly two blocks.

2.3. METRIC GRAPH THEORY

Let G be a connected graph. The distance dG(u, v) between a pair of vertices
u, v ∈ V (G) is the length (i.e., the number of edges) of the shortest path between u
and v in G. The eccentricity of u is the number

eccG(u) = max{dG(u, x) : x ∈ V (G)}.
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The diameter and radius of G are the numbers

diam G = max{eccG(u) : u ∈ V (G)}
= max{dG(u, v) : u, v ∈ V (G)}

and
rad G = min{eccG(u) : u ∈ V (G)},

respectively.
The metric interval between two vertices u, v ∈ V (G) in a connected graph G is

the set
[u, v]G = {x ∈ V (G) : dG(u, x) + dG(x, v) = dG(u, v)}.

For a triple of vertices u, v, w ∈ V (G), we define the corresponding median set as

MG(u, v, w) = [u, v]G ∩ [u, w]G ∩ [v, w]G.

Lemma 2.8. If in a connected graph G, vertices x, y, z ∈ V (G) have a non-empty
median set, then at least one of the distances dG(x, y), dG(x, z), dG(y, z) is even.

Proof. Assume all the distances dG(x, y), dG(x, z), dG(y, z) are odd. Fix an element
m ∈ MG(x, y, z). Then

dG(x, y) = dG(x, m) + dG(m, y),

dG(x, z) = dG(x, m) + dG(m, z),

dG(y, z) = dG(y, m) + dG(m, z).

Hence,

dG(x, y) + dG(x, z) + dG(y, z) = 2dG(x, m) + 2dG(y, m) + 2dG(z, m),

an even number. The obtained contradiction proves the lemma.

A subgraph H of a connected graph G is called isometric provided H is connected
and dH(u, v) = dG(u, v) for all u, v ∈ V (H). The next folklore result is the cornerstone
of many proofs in metric graph theory.

Lemma 2.9. In a connected graph, any odd cycle of the smallest length is isometric.

Given a connected graph G, a vertex u ∈ V (G) and a set of vertices A ⊂ V (G),
the distance from u to A is the number

dG(u, A) = min{dG(u, a) : a ∈ A}.
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The projection of u onto A is the set

prA(u) = {a ∈ A : dG(u, A) = dG(u, a)}.

A set A ⊂ V (G) is called Chebyshev provided | prA(u)| = 1 for every u ∈ V (G). Having
a Chebyshev set A, we will consider the projection prA just as a mapping from V (G)
to itself.

Let G be a connected graph, u ∈ V (G) and A ⊂ V (G). A vertex a ∈ A is called
a gate for u in A provided for all x ∈ A it holds a ∈ [u, x]G. For example, any a ∈ A is
a gate in A for itself. It is also can be easily proved that for any u ∈ V (G) there exists
at most one gate in A. This motivates the following definition. A set A is called gated
if for any u ∈ V (G) there exists a gate for u in A. For such a set A, by gA(u) we will
denote the unique gate for u in A. One can observe that any gated set is Chebyshev
(with gA(u) being the unique element in prA(u)).

It is clear that empty set is not gated, hence the intersection of gated sets is not
always gated itself. However, the next result holds.

Lemma 2.10 ([3]). The non-empty intersection of gated sets is a gated set.

The following lemma specifies an important family of gated sets in connected
graphs.

Lemma 2.11. The vertex set of any connected union of blocks in a connected graph
is a gated set.

Proof. Let G be a connected graph and B1, . . . , Bm be its blocks such that H =⋃m
i=1 Bi is a connected subgraph of G. Put A = V (H). To the contrary, assume that

A is not gated. Then there is a vertex x ∈ V (G) such that for all a ∈ A there exists
b ∈ A with a /∈ [x, b]G. Clearly, x /∈ A. Let x be such a vertex with the smallest
distance dG(x, A). Consider any vertex a ∈ prA(x) and the corresponding vertex
b ∈ A. Fix three shortest paths: P1 – from x to a in G, P2 – from x to b in G, and
P3 – from a to b in H (here we use the connectedness of H). It is easy to see that
V (P1) ∩ V (P2) = {x} (otherwise, there would be a contradiction with the minimality
of dG(x, A)) and V (P1) ∩ V (P3) = {a} (otherwise, we obtain a contradiction with
the condition a ∈ prA(x)). Now fix a vertex b′ ∈ V (P2) ∩ V (P3) with the smallest
distance dP2(x, b′) (in other words, b′ is the first vertex on a path P2 that lies on P3).
Concatenate the following paths: P1 (from x to a) with the part of P3 from a to b′

and the part of P2 from b′ to x. The resulted closed walk would be a simple cycle (see
Figure 1). Hence, by Lemma 2.4, we obtain that x and a lie in the same block Bi in G.
Thus, x ∈ A. The obtained contradiction proves the lemma.

Lemma 2.12. Let G be a graph and v ∈ V (G) be a cut vertex lying in blocks
B1, . . . , Bm. Then for each i ∈ {1, . . . , m} there exists a non-cut vertex ui ∈ V (G)
such that v = gAi

(ui) for the gated set Ai =
m⋃

j=1,j ̸=i

V (Bj).
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Proof. Clearly, Ai is the vertex set of a connected union of blocks in G. Hence, by
Lemma 2.11, Ai is a gated set. Further, for any i ∈ {1, . . . , m} consider the connected
component Gi in G−v which contains the set V (Bi)\{v} (clearly, this is a connected set
in G). As Gi is a connected graph, it has a non-cut vertex ui ∈ V (Gi). It is easy to see
that ui is also a non-cut vertex in G. Moreover, for any x ∈ Ai every shortest ui − x
path in G contains v which yields the equality v = gAi

(ui).

P2

P3

P1

b b′

a

x

Fig. 1. An illustration for the proof of Lemma 2.11

3. MAIN RESULTS

3.1. NCO-GRAPHS AND SUITS

At first, we present the criterion for a connected graph to have odd distances between
any two of its different non-cut vertices. Subsequently, we will refer to such graphs as
NCO-graphs.

Theorem 3.1. A connected graph is an NCO-graph if and only if it is a line graph
of a SUIT.

Proof. Sufficiency. Immediately follows from the fact that for each pair of edges
xy, uv ∈ E(T ) in any tree T it holds

dL(T )(xy, uv) = max{dT (x, u), dT (x, v), dT (y, u), dT (y, v)} − 1.

Now assuming T is a SUIT and taking xy, uv to be the non-cut vertices in L(T ), without
loss of generality, we can conclude that x, u ∈ Leaf(T ). Hence, the maximum above
equals dT (x, u), which is an even number. Therefore, dL(T )(xy, uv) = dT (x, u)−1 is odd.
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Necessity. Let G be an NCO-graph. We break down the proof in this direction into
three separate claims.
Claim 1. G is a block graph.

By contradiction, we assume G is not a block graph. Then it contains a non-complete
block B, implying there exist two vertices u, v ∈ V (B) with dB(u, v) = dG(u, v) = 2.
Fix a vertex w ∈ V (B) with w ∈ [u, v]G. It is clear that u and v cannot be non-cut
vertices simultaneously. Further we consider two cases.
Case 1. Both u, v are cut vertices.

By Lemma 2.12, there exist two different non-cut vertices x, y ∈ V (G) with
prB(x) = u and v = prB(y). If w is also a non-cut vertex, then dG(x, w) + dG(w, y) =
dG(x, y) implying these three distances cannot be odd simultaneously. If w is a cut
vertex, then again, invoking Lemma 2.12, we can ensure the existence of a non-cut
vertex z ∈ V (G)\{x, y} having prB(z) = w. Hence, w ∈ MG(x, y, z) implying that, by
Lemma 2.8, the distances dG(x, y), dG(x, z), dG(y, z) cannot be odd simultaneously.
Case 2. Exactly one of the vertices u, v is a cut vertex.

Without loss of generality, suppose u is a cut vertex and v is not. As before,
there is a non-cut vertex x ∈ V (G) with prB(x) = u. If w is non-cut, then dG(x, w)
and dG(x, v) are cannot be odd simultaneously. If w is a cut vertex, then we fix
z ∈ V (G)\{x} with prB(z) = w. We have w ∈ MG(x, v, z). Thus, in this case,
the distances dG(x, z), dG(x, v) and dG(z, v) cannot be odd simultaneously as well.
Therefore, G is a block graph.
Claim 2. G is a line graph of a tree.

According to Proposition 2.7, we only need to show that each cut vertex of
G lies exactly in two blocks. To the contrary, assume there exists a cut vertex
v ∈ V (G) which lies in blocks B1, . . . , Bm, where m ≥ 3. By Lemma 2.12, there
exist non-cut vertices u1, u2, u3 ∈ V (G) such that v = gA1(u1) = gA2(u2) = gA3(u3),
where Ai =

m⋃
j=1,j ̸=i

V (Bj) for i ∈ {1, . . . , m}. In particular, v ∈ MG(u1, u2, u3). Also,

we claim that u1, u2, u3 are pairwise different. Indeed, if, for example, u1 = u2, then
fix the vertex w ∈ NG(v) on some shortest u1 − v path. By construction, w ∈ B1 ∩ B2
which is a contradiction. Finally, by Lemma 2.8, one of the distances dG(u1, u2),
dG(u2, u3), dG(u1, u3) is even and non-zero. The obtained contradiction proves that
G is a line graph of a tree.
Claim 3. G is a line graph of a SUIT.

Again, we prove it by contradiction. Let T be a tree with G ≃ L(T ) and
u, v ∈ Leaf(T ) such that dT (u, v) is odd. Let x, y ∈ V (T ) be support vertices for
u and v, respectively. Then ux and yv are non-cut vertices in L(T ), and hence in G.
However, dL(T )(ux, yv) = dT (u, v) − 1 is even. The obtained contradiction proves the
theorem.

Since for any tree T and a pair of its leaves u, v ∈ Leaf(T ) with the respective
support vertices u′, v′ it holds dT \ Leaf(T )(u′, v′) = dT (u, v) − 2, the next proposition
is clear.
Proposition 3.2. If T is a SUIT, then T\ Leaf(T ) is also a SUIT.
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Now we show that any SUIT can be obtained from a star by repeatedly applying
one simple operation. To make this precise, we need one more definition. By an inner
even vertex we mean an inner vertex that has even distances to all the leaves. By parity,
the distances between inner even vertices are always even. And clearly, an inner even
vertex cannot be a support vertex.

Theorem 3.3. Let T be a tree with diam T ≥ 4. Then T is a SUIT if and only
if T is inductively obtained from K1,m, m > 1 by the following operation: each leaf
must become a support vertex for new leaves and each inner even vertex may become
a support vertex for new leaves.

Proof. Sufficiency. We use induction on the number of such operations.
For the base case, since K1,m does not have inner even vertices, the only operation

that can be applied here is adding leaves on each leaf of K1,m, i.e., we obtain T such
that T\ Leaf(T ) = K1,m. Clearly, for all u, v ∈ Leaf(T ) it holds dT (u, v) = 4. Hence,
T is a SUIT.

Now let T be a tree obtained from K1,m by q ≥ 2 operations. Denote by T ′ the
tree obtained by the respective q − 1 operations. Let x1, . . . , xk be those inner even
vertices of T ′ that would become support vertices in q-th operation. Fix two leaves
u, v ∈ Leaf(T ). We have the following cases:

1. u, v are new leaves attached to the leaves u′, v′ of T ′, respectively. Then dT (u, v) =
dT ′(u′, v′) + 2 is an even number.

2. u is a new leaf attached to the leaf u′ of T ′ and v is a leaf-neighbor of xi for some
i ∈ {1, . . . , k}. Then dT (u, v) = dT ′(u′, xi) + 2 is an even number.

3. u is a leaf-neighbor of xi, v is a leaf-neighbor of xj for some i, j ∈ {1, . . . , k}. Then
dT (u, v) = dT ′(xi, xj) + 2 is an even number.

Necessity. Again, we use induction on rad T to show that T is obtained from K1,m

by applying exactly rad T − 1 operations.
For the base case, assume diam T = 4. Then the tree T\ Leaf(T ) has diameter

two. Thus, T\ Leaf(T ) ≃ K1,m for m > 1. Clearly, T is obtained from T\ Leaf(T ) by
adding new leaves to each leaf in T\ Leaf(T ).

Now let diam T ≥ 5. Similarly, we consider the tree T ′ = T\ Leaf(T ), which is also
a SUIT (see Proposition 3.2). It is clear that rad T ′ = rad T − 1. Thus, by induction
assumption, T ′ is obtained from K1,m by applying rad T ′ − 1 operations.

Let S ⊂ V (T ′) be the set of all support vertices for leaves in T . Clearly,
Leaf(T ′) ⊂ S. We claim that any vertex v ∈ S\ Leaf(T ′) is an inner even vertex
in T ′. Indeed, let v be the support vertex for the leaf u ∈ Leaf(T ). If v is not an inner
even vertex in T ′, then there is a leaf x ∈ Leaf(T ′) with dT ′(v, x) being odd. However,
since x ∈ S, there is a leaf y ∈ Leaf(T ) with x being its support vertex. This implies

dT (u, x) = 1 + dT (v, x) + 1 = dT (v, x) + 2 = dT ′(v, x) + 2

is odd as well. A contradiction, which proves that T is indeed obtained from K1,m

by applying exactly rad T ′ − 1 + 1 = rad T ′ = rad T − 1 operations.
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3.2. NCE-GRAPHS

In this section, we study connected graphs in which the distance between any two
non-cut vertices is even. For convenience, we will refer to them as NCE-graphs. Thus,
SUITs are exactly the NCE-trees. The crucial step in obtaining the criterion for
NCE-graphs is the following observation.

Theorem 3.4. Every NCE-graph is bipartite.

Proof. To the contrary, assume that G is an NCE-graph which is not bipartite. Hence,
G has an odd cycle. Let C be an odd cycle of the smallest length in G. Then C is an
isometric subgraph in G (see Lemma 2.9). Consider the following vertex 2-coloring of C:
f : V (C) → {0, 1}, f(u) = 1 for all cut vertices u in G and f(u) = 0, otherwise. Since
C has an odd length, there is an edge uv ∈ E(C) with f(u) = f(v). If f(u) = f(v) = 0,
then both u and v are non-cut vertices in G at the distance dG(u, v) = 1, which is
a contradiction. Hence, we have f(u) = f(v) = 1 implying that u and v are both cut
vertices in G.

Further, fix the vertex x ∈ V (C) with dC(x, u) = dC(x, v) (in other words, the
vertex x is the “opposite” to the edge uv on C). By Lemma 2.12, there is a non-cut
vertex a ∈ V (G) with u being the gate for a in V (C). A similar argument ensures
the existence of a non-cut vertex b ∈ V (G) with v being the gate for b in V (C)
(see Figure 2).

Since G is an NCE-graph, dG(a, b) is an even number. Also,

dG(a, b) = dG(a, u) + dG(u, v) + dG(v, b) = dG(a, u) + 1 + dG(v, b)

implying that dG(a, u) or dG(v, b) is an odd number. Without loss of generality, assume
that dG(a, u) is odd. In this case, dG(v, b) is even.

C
a

u

v

b

x

Fig. 2. An illustration for the proof of Theorem 3.4
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If x is a non-cut vertex in G, then both distances dG(a, x) and dG(b, x) are even.
On the other hand,

dG(a, x) = dG(a, u) + dG(u, x) = dG(a, u) + dG(v, x)
= dG(a, u) + dG(b, x) − dG(v, b)

is an odd number (as dG(a, u) is odd and dG(b, x), dG(b, v) are even numbers), which
is a contradiction.

Finally, assume that x is a cut vertex. Using Lemma 2.12, we can conclude that there
is a non-cut vertex c ∈ V (G) with x being the gate for c in V (C). We have that dG(a, c)
and dG(b, c) are even numbers. However, if dG(c, x) is odd, then dG(u, x) = dG(v, x) is
even implying that dG(b, c) = dG(b, v)+dG(v, x)+dG(x, c) is odd. Similarly, if dG(c, x)
is even, then dG(a, c) is odd. The obtained contradictions show that G cannot have
odd cycles, hence, G is bipartite.

Having proved Theorem 3.4, the criterion for NCE-graphs follows easily.

Corollary 3.5. A connected graph G is an NCE-graph if and only if G is bipartite
having all its non-cut vertices in a common part of the corresponding bipartition.

Proof. Immediately follows from Theorem 3.4 and the fact that in a connected bipartite
graph the distance between two vertices is even if and only if they lie in the same part
of the bipartition.

Corollary 3.6. Any bipartite graph is an induced subgraph of an NCE-graph.

Proof. Let H be a bipartite graph and V (H) = A ⊔ B be a bipartition of H. Put
A′ = {u ∈ A : u is a non-cut vertex in H}. In order to construct the desired NCE-graph
G, take H and for any vertex u in A′ add a new leaf u′ adjacent to u:

V (G) = V (H) ⊔ {u′ : u ∈ A′} and E(G) = E(H) ∪ {uu′ : u ∈ A′}.

It is clear that now all the non-cut vertices are in part B and leaves {u′ : u ∈ A′}
also join the part B in a bipartition of G. Also, all connected components of G are
NCE-graphs. To make G a connected graph, add a vertex x and connect it to one
representative of each “non-cut”-part of each connected component. Again, all the
non-cut vertices in the resulting graph lie in the same part, hence it is an NCE-graph
by Corollary 3.5.

We illustrate the construction in the proof of Corollary 3.6 with the following
example.

Example 3.7. Consider a graph H with

V (H) = {1, 2, 3, 4, 5, a, b, c, d} and E(H) = {13, 14, 23, 24, 25, ac, bc, bd}.

Clearly, H is bipartite having two connected components. Put A = {1, 2, a, b} and
B = {3, 4, 5, c, d} (see Figure 3). Then A′ = {1, a}. The corresponding connected
NCE-graph G, which contains H as its induced subgraph, is depicted in Figure 4.
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a b

c d

Fig. 3. The bipartite graph H from Example 3.7
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a b
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Fig. 4. An NCE-graph G having H as an induced subgraph

Corollary 3.8. Every tree is a subtree of a SUIT.

Proof. Directly follows from the proof of Corollary 3.6 as the addition of new leaves
cannot produce a cycle or disconnect a tree.

Combining Theorem 3.1 and Corollary 3.8, we can easily characterize induced
subgraphs of NCO-graphs.

Corollary 3.9. A graph is an induced subgraph of an NCO-graph if and only if it is
a line graph of a tree.

Proof. Necessity. Let H be an induced subgraph of an NCO-graph G. By Theorem 3.1,
G is a line graph of a SUIT. Proposition 2.7 asserts that G is a block graph in which
every cut vertex lies in two blocks. It is clear that H is also a block graph with
the same property. Hence, by Proposition 2.7, H is a line graph of some tree (not
necessarily a SUIT).

Sufficiency. Assume H ≃ L(T0) for some tree T0. By Corollary 3.8, T0 is a subtree
of some SUIT T . Thus, Theorem 3.1 implies that H ≃ L(T0) is an induced subgraph
of an NCO-graph L(T ).

It is not a coincidence that the NCE-graph in Figure 4 has two leaves. We call
a block B in a graph G a leaf block if it contains a unique cut vertex from G (equivalently,
if B is a non-cut vertex in the block graph B(G)).
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Proposition 3.10. Every leaf block in an NCE-graph is a leaf edge.

Proof. Assume that B is a leaf block in an NCE-graph G and u ∈ V (B) is its unique
cut vertex. If |V (B−u)| = 1, then B is a leaf edge. Otherwise, B−u would have an edge
xy ∈ E(B − u). However, x and y are non-cut vertices in G. A contradiction.

Remark 3.11. Finite multigraphs (with multiple edges allowed, but no loops) that
satisfy the property described in Proposition 3.10 find applications in the study
of smooth functions, particularly Morse functions, on closed manifolds. Specifically,
a digraph D is said to have a good orientation if it is acyclic, and all its sources and
sinks are leaves. Sharko proved in [9] that a multigraph G serves as a Reeb graph of
some smooth function with isolated critical points on a closed smooth manifold Mn

if and only if G admits a good orientation.
Later, in [4], Gelbukh further clarified this result by showing that such multi-

graphs G are precisely those in which every leaf block is an edge. This finding was
extended in [4] to multigraphs G that allow the so-called S-good orientations (char-
acterized by the structure of blocks in G). Here, given S ⊂ Z+, a digraph D is said
to have an S-good orientation if it is acyclic, and the degrees of its sources and sinks
belong to S.

From Proposition 3.10 we immediately obtain the next corollary.

Corollary 3.12. Any NCE-graph with at least two vertices has at least two leaves.

Moreover, we can characterize NCE-graphs having exactly two leaves. To do this,
by B2(G) we denote the subgraph of the block graph B(G) which is induced by all
bridges in G.

Theorem 3.13. A graph G is an NCE-graph with | Leaf(G)| = 2 if and only if G is
a path with an odd number of vertices, or G is not a path and satisfies the following
conditions:

1. the block graph B(G) is a path with at least two vertices,
2. each block in G is isomorphic to K2 or K2,m for some m ≥ 2,
3. each block B ≃ K2,m, m ≥ 2 in G has exactly two cut vertices from G which form

a part of the bipartition of B,
4. each connected component in B2(G) which does not contain leaves from B(G) has

an even number of vertices,
5. each connected component in B2(G) containing leaves from B(G) has an odd

number of vertices.

Proof. Necessity. If G is a path, it is clear that in order to be an NCE-graph, G must
have an odd number of vertices. Hence, in what follows we assume that G is not a path.
We prove each condition separately.

1. From Proposition 3.10 and the condition | Leaf(G)| = 2 it follows that B(G) has
exactly two non-cut vertices. Therefore, the block graph B(G) must be a path with at
least two vertices.

2. Let B be a block of G. If B is a leaf block, then B ≃ K2. Otherwise, B contains
exactly two cut vertices from G (as B(G) is a path), say u, v ∈ V (B). As B is
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2-connected, u and v lie on a cycle C in B. Since V (C)\{u, v} contains only non-cut
vertices in G, C must have length at most four (otherwise, C would contain two
adjacent non-cut vertices). If C is a triangle, then G is not bipartite implying it
is not an NCE-graph (see Theorem 3.4). This implies that C is of length four, say
C = {u−x−v−y−u}. Moreover, it is clear that C is an induced subgraph in G. Finally,
for any w ∈ V (B)\{u, v} we have NB(w) ⊂ {u, v}. However, as B is 2-connected, we
have NB(w) = {u, v}. This proves that B ≃ K2,m.

3. If a block B ≃ K2,m in G contained at most one cut vertex from G, then B
would have two adjacent non-cut vertices from G. A contradiction.

4. Assume there exists a connected component H in B2(G) with an odd number of
vertices and which does not contain leaves in B(G). It is clear that H is a path. Denote
by H1 and H2 its two leaves. Also, there are two blocks B1, B2 ∈ V (B(G))\V (B2(G))
which are adjacent in B(G) with H1 and H2, respectively. This means that there
are two cut vertices from G, say x, y ∈ V (G) with x ∈ V (H1) ∩ V (B1) and
y ∈ V (H2) ∩ V (B2). Since B1 and B2 are not bridges in G, they contain two non-cut
vertices from G, say u ∈ V (B1) and v ∈ V (B2) (see Figure 5). From condition 2 it
follows that ux, vy ∈ E(G). And since each vertex from H is a bridge in G, we obtain
dG(u, v) = 1 + |V (H)| + 1 = 2 + |V (H)| is an odd number. This is a contradiction.

B1
H2H1

B2r r rrrr rrr r r rr r r
H& %

u

x y

v

Fig. 5. The distance between two non-cut vertices u and v is odd

5. Fix one of the two connected components H in B2(G) which contains a leaf B0 in
B(G). Since G is not a path, it contains a block which is not a bridge. By the condition 2,
all such blocks are isomorphic to K2,m, m ≥ 2. Hence, let B ∈ V (B(G))\V (B2(G))
be such a block which is adjacent to a leaf B′ from H. This implies the existence of
a cut vertex x ∈ V (G) with x ∈ V (B′) ∩ V (B) (see Figure 6). Fix a non-cut vertex
u ∈ V (B) in G and a leaf v ∈ V (B0). Then dG(u, v) = dG(u, x)+ |V (H)| = 1+ |V (H)|
implying that |V (H)| is an odd number.

B0

B

B′r r r rrr r r r
H& %

v x

u

Fig. 6. The distance between a non-cut vertex u and a leaf v is even
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Sufficiency. If G is a path with an odd number of vertices, then clearly G is
an NCE-graph. Otherwise, suppose that G is not a path satisfying conditions 1–5.
Condition 1 immediately ensures that G is connected.

Aiming towards contradiction, we assume that G is not an NCE-graph. Then there
is a pair of non-cut vertices in G at the odd distance. Let u, v ∈ V (G) be such a pair
with the smallest dG(u, v). Also, let B1 and B2 be the (unique) blocks containing u
and v, respectively. If B1 = B2 = B, then condition 2 implies that B ≃ K2,m for some
m ≥ 2. Thus, condition 3 asserts that u and v lie in the same part of the bipartition
of B. But this means that dG(u, v) = dB(u, v) = 2.

Hence, suppose B1 ≠ B2. Fix the shortest path P : u = x0 − . . . − xd = v between
u and v (here d = dG(u, v) ≥ 3). From the minimality of dG(u, v) it follows that any
vertex xi, 1 ≤ i ≤ d − 1 is a cut vertex in G. From conditions 2–3 we can conclude
that any edge xixi+1, 1 ≤ i ≤ d − 2 is a bridge in G. Clearly, these bridges form
a connected subgraph H in B2(G). We proceed considering two cases.
Case 1. Neither B1 nor B2 is a leaf in B(G).

Here H is a connected component in B2(G). Indeed, if this is not the case, there is an-
other bridge B ∈ V (B2(G))\V (H) adjacent to some bridge in H. Since B /∈ {B1, B2},
there would be some cut vertex xi, 1 ≤ i ≤ d − 1, lying in at least three different
blocks in G (the blocks being xi−1xi, xixi+1 and B provided 1 < i < d − 1; B1, x1x2
and B provided i = 1; B2, xd−1xd−2 and B provided i = d − 1). Hence, B(G) would
contain a triangle, which contradicts condition 1.

Therefore, H is a connected component in B2(G) not containing the leaves from
B(G). Condition 4 then implies that |V (H)| = d − 2 is even. Consequently, d is also
even, which contradicts our assumption.
Case 2. One of B1, B2 is a leaf in B(G).

Without loss of generality, suppose B1 is a leaf in B(G). Then B2 is not a leaf in
B(G). Indeed, assuming they both are leaves in B(G) and invoking conditions 2–3,
we obtain that B1 ≃ B2 ≃ K2. Therefore, each block in G is a bridge. Combining this
with condition 1, we obtain that G is a path, which is a contradiction.

Thus, B2 is not a leaf in B(G). We claim that in this case V (H) ∪ {ux1} induces
a connected component H ′ in B2(G). Indeed, as in the previous case, it is clear that
H ′ is a connected subgraph. Again, assuming H ′ is not a connected component in
B2(G) leads to the existence of a bridge B ∈ V (B2(G))\V (H ′) which is adjacent to
some bridge in H ′. But this would imply the existence of a cut vertex xi, 1 ≤ i ≤ d − 1
lying in at least three different blocks in G. Again, a contradiction with condition 1.

Therefore, H ′ is a connected component in B2(G) containing a leaf B1 from B(G).
Condition 5 now asserts that |V (H ′)| = d − 1 is odd. Therefore, d is even again. The
obtained contradiction finishes the proof.

It is easy to see that every tree can be subdivided to an NCE-graph. Indeed, if we
subdivide all the edges in a given tree, then the resulting tree clearly will be a SUIT.
We now generalize this result by providing the full characterization of graphs which
can be subdivided to NCE-graphs.
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Proposition 3.14. A connected graph G with |V (G)| ≥ 3 can be subdivided to an
NCE-graph if and only if the set of its non-cut vertices is independent.

Proof. Necessity. To the contrary, suppose G contains a pair of adjacent non-cut
vertices u and v. In this case, dG(u, v) = 1 and the edge uv must be subdivided by
a vertex x in order to make this distance even. However, in any such a subdivision H
of G the vertices u and x (since |V (G)| ≥ 3) are adjacent non-cut vertices. Thus, H is
not an NCE-graph.

Sufficiency. Subdivide each edge e ∈ E(G) between every pair of cut vertices
in G by a new vertex xe. Denote the obtained graph as H. It is clear that non-cut
vertices in H are precisely the non-cut vertices of G with those new vertices xe for
which the respective edge e is not a bridge. Since the set of non-cut vertices in G is
independent, we obtain that H is a bipartite graph with one part containing all cut
vertices from G and second part containing all non-cut vertices from G and all xe.
Since all non-cut vertices of H lie in a common part of the bipartition, by Corollary 3.5,
H is an NCE-graph.

Corollary 3.15. If a graph can be subdivided to an NCE-graph, then it has at least
two leaves.

Proof. Follows from Corollary 3.12 and the fact that subdivision of edges cannot
produce new leaves.

We say that an NCE-graph is minimal if it does not contain a strictly smaller
spanning NCE-graph. Similarly, an NCE-graph is called maximal if it is not a spanning
subgraph of a strictly bigger NCE-graph. It is easy to observe that minimal NCE-graphs
are exactly SUITs. Indeed, on the one hand, it is clear that each SUIT is a minimal
NCE-graph. On the other hand, from Corollary 3.5 it follows that the deletion of
a non-bridge edge from any NCE-graph results in an NCE-graph as well. Hence, each
edge in a minimal NCE-graph G is a bridge. This means that G is a tree, implying
that G is a SUIT.

In the next result, we characterize maximal NCE-graphs. To do this, we introduce
several auxiliary definitions. Let G be a connected graph. A vertex u ∈ V (G) is called
nc-even (nc-odd) if it has even (odd) distances to all non-cut vertices in G. For instance,
inner even vertices in trees provide an example of nc-even vertices. The block degree
bdG(u) of a vertex u in a connected graph G is the number of connected components
in G − u. Thus, u is a cut vertex if and only if bdG(u) ≥ 2.

Theorem 3.16. An NCE-graph G is maximal if and only if G ≃ K1,m or the next
conditions hold:

1. each block in G is a complete bipartite graph;
2. for every nc-odd vertex u ∈ V (G) it holds:

(a) bdG(u) = 2,
(b) any cut vertex from NG(u) is separated by u from other vertices in NG(u).

Proof. Necessity. Let G be a maximal NCE-graph and B be its block. By Corollary 3.5,
B is bipartite with all the non-cut vertices in G from V (B) located in a common part



Graphs with odd and even distances between non-cut vertices 21

of the corresponding bipartition V (B) = X ⊔Y . If there were two non-adjacent vertices
x ∈ X, y ∈ Y , then adding the edge xy to G would not affect the block structure of G
and, consequently, result in a strictly larger NCE-graph. Thus, B must be complete
bipartite.

Now suppose that G is not a star and let u ∈ V (G) be an nc-odd vertex. Since
G is an NCE-graph, we can conclude that u is a cut vertex. Further, G is not a star,
which implies that there exists a vertex v ∈ V (G) with dG(u, v) = 2. Fix a vertex
x ∈ NG(u) ∩ NG(v). Note that v is also a cut vertex in G (and x can be a cut as well
as a non-cut vertex).

If bdG(u) ≥ 3, then there exist two different blocks B1, B2 of G which contain u,
but do not contain the edge ux. Let us fix a vertex y ∈ V (B1) ∩ NG(u). It is clear
that yv /∈ E(G). Add the edge yv to G in order to obtain the graph G′ (see Figure 7).

B1

B2

'

&

$

%
'
&

$
%u x v

y

Fig. 7. By adding the missing edge yv to G we can make a bigger NCE-graph G′

We claim that G′ is an NCE-graph as well. At first, one can observe that G′ is
a bipartite graph (with the same bipartition as G). Further, it is clear that the addition
of a new edge does not turn non-cut vertices into cut vertices. And since y − u − x − v
is the only simple path between y and v in G, the addition of an edge yv to G could
turn, possibly, a cut vertex x into a non-cut vertex. If x was a non-cut vertex in G,
then G′ has the same non-cut vertices and hence, G′ is a NCE-graph by Corollary 3.5.
Hence, suppose that this is not the case. Let x be a cut vertex in G and a non-cut
vertex in G′. We have that x lies in the opposite part to u in G′, which is the same
part where all the non-cut vertices in G are. This means that G′ is also a connected
bipartite graph having all of its non-cut vertices in the same part. Corollary 3.5 again
implies that G is an NCE-graph. The obtained contradiction shows that bdG(u) = 2
and hence, the condition 2(a) holds.

Now let w ∈ NG(u) be a cut vertex and v ∈ NG(u) such that w and v are not
separated by u in G. This means that w, v, u lie in a common block in G. Denote this
block as B. Since w is a cut vertex, we can fix a vertex t ∈ NG(w)\V (B). Let us add
the edge tv to G in order to obtain a graph G′′ (see Figure 8). Since dG(t, v) = 3 is
odd, G′′ is a bipartite graph as well. Moreover, as u do not separate w and v in G,
the vertex u remains a cut vertex in G′′. Since u is an nc-odd vertex in G and w is
adjacent to u in G, the vertex w lies in the same part where all the non-cut vertices
in G are. Hence, even if w becomes a non-cut vertex in G′′, Corollary 3.5 ensures that
G′′ is an NCE-graph as well. The obtained contradiction justifies the condition 2(b).
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Fig. 8. By adding the missing edge tv to G we can make a bigger NCE-graph G′′

Sufficiency. To the contrary, assume that G is not a maximal NCE-graph which
satisfies both conditions. Let H be some maximal NCE-graph containing G as its
spanning subgraph. Fix an edge uv ∈ E(H)\E(G).

Again, since G is connected, u, v lie on a cycle in H. Since H is an NCE-graph,
by Theorem 3.4, any such a cycle is of even length. This implies that the distance
dG(u, v) is odd. Hence, dG(u, v) ≥ 3. Fix the shortest path between u and v in G:
u − u1 − . . . − um = v, where m = dG(u, v). Since u, v lie on a cycle in H, they lie in
a common block in H. However, each block in G (and hence, in H) is complete bipartite
implying that uu3 ∈ E(H). As was mentioned before, the deletion of a non-bridge
edge from an NCE-graph results in an NCE-graph. Hence, deleting corresponding
edges from H, we can conclude that adding an edge uu3 to G also results in an
NCE-graph. Denote this graph by G′. Further we consider two cases.

Case 1. either u1 or u2 is a non-cut vertex in G.
Without loss of generality, suppose u1 is a non-cut vertex in G. Then u2 is an

nc-odd vertex in G. By condition 2(a), we have bdG(u2) = 2. If u2 does not separate
u1 and u3 in G, then u1, u2 and u3 lie in a common block B1 in G. Similarly, as u1 is
a non-cut vertex in G, it cannot separate vertices u and u2 in G. Thus, u, u1 and u2
also lie in a common block B2 in G. This means that u and u3 lie in a common block
B1 = B2 in G (as both B1 and B2 contain an edge u1u2). However, dG(u, u3) = 3
contradicts the condition 1. This means that u2 separates u1 and u3 in G (see Figure 9).
Hence, u2 does not separate these two vertices in G′ (as G′ is obtained from G by
adding exactly the edge uu3). Combining this fact with the equality bdG(u2) = 2,
we can conclude that u2 is a non-cut vertex in G′. But this is a contradiction, since we
have two adjacent non-cut vertices u1 and u2 in an NCE-graph G′.

B2 B1

u u1 u2 u3

Fig. 9. The vertex u2 must separate u1 and u3 in G
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Case 2. both u1 and u2 are cut vertices in G.
Since G is an NCE-graph, Corollary 3.5 guarantees that either u1 or u2 is an nc-odd

vertex in G. Without loss of generality, let us assume that u2 is an nc-odd vertex in G.
From condition 2(a), it follows that bdG(u2) = 2. Moreover, based on condition 2(b),
we observe that u2 separates the cut vertex u1 from u3 in G. Consequently, when
forming G′, u2 becomes a non-cut vertex. However, as u2 was an nc-odd vertex
in G, it lies in the opposite part compared to where all the non-cut vertices in G
(and consequently in G′) are located. Using Corollary 3.5 and the uniqueness of the
bipartition for connected bipartite graphs, we conclude that G′ is not an NCE-graph.
This contradiction establishes that G is indeed a maximal NCE-graph.

Remark 3.17. Note that the condition 2 in Theorem 3.16 implies that an nc-odd
vertex in a maximal NCE-graph can be adjacent to at most two cut vertices.

Corollary 3.18. In a maximal NCE-graph, any vertex with block degree at least three
is an nc-even vertex.

Proof. Immediately follows from the condition 2(a) of Theorem 3.16.

Corollary 3.19. A graph is a minimal and maximal NCE-graph simultaneously if
and only if it is a SUIT in which every vertex of degree at least three is an nc-even
vertex.

Proof. Follows from Corollary 3.18 and the fact that in a tree T we have dT (u) = bdT (u)
for all u ∈ V (T ).

Corollary 3.20. Any NCE-graph with exactly two leaves is a maximal NCE-graph.

Proof. Let G be an NCE-graph with | Leaf(G)| = 2. Theorem 3.13 implies that each
block in G is complete bipartite. Hence, G satisfies the condition 1 from Theorem 3.16.
Furthermore, the equality | Leaf(G)| = 2 clearly implies that bdG(u) = 2 for all
cut vertices u ∈ V (G). In particular, this holds for all nc-odd vertices, implying
condition 2(a) from Theorem 3.16. Finally, if an nc-odd vertex u is adjacent to a cut
vertex w, then the conditions 2 and 3 from Theorem 3.13 imply that the edge uw
is a bridge in G. Thus, condition 2(b) from Theorem 3.16 also holds. Hence, by
Theorem 3.16, G is a maximal NCE-graph.

Example 3.21. Consider the graph G depicted in Figure 10. It can be easily verified
that G is an NCE-graph; however, it is not maximal. Indeed, G satisfies conditions 1
and 2(a) of Theorem 3.16, but the condition 2(b) is violated at the vertex u. Namely,
u is an nc-odd vertex in G that does not separate the cut vertex w from v. If we add
the edge tv to G, then the resulting graph would be a maximal NCE-graph.
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Fig. 10. A non-maximal NCE-graph G:
an nc-odd vertex u does not separate the cut vertex w from v
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