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Abstract. In this study, we addressed the nonoscillation of the Sturm–Liouville
differential equation with a differential operator, which corresponds to
a proportional-derivative controller. The equation is a conformable linear dif-
ferential equation. A Wintner-type nonoscillation theorem was established to be
applied to such equations. Using this theorem, we provided a sharp nonoscillation
condition that guarantees that all nontrivial solutions to Euler-type conformable
linear equations do not oscillate. The main nonoscillation theorems can be proven
by introducing a Riccati inequality, which corresponds to the conformable linear
equation of the Sturm–Liouville type.
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1. INTRODUCTION

Typical examples of fractional differential equations include using the
Riemann–Liouville and Caputo definitions, which are used to define phenomena that
occur in fields such as engineering, physics, economics, and science (for example,
see [21]). However, the Riemann–Liouville and Caputo definitions do not satisfy
results applicable to ordinary differentiation (see [12, 19, 23] for details). The
development of a novel differential that can express the properties of ordinary
differentials with neither excess nor deficiency has attracted considerable research
attention (for example, see [1, 2, 4, 5, 16, 28]). This derivative is called the
conformable fractional derivative. For example, a common derived conformable
fractional derivative is given by the following differential operator:

Tαf(t) := lim
s→t

f(t)− f(s)

t− s
t1−α, t > 0,
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as defined by Khalil et al. [19] to cover the Riemann–Liouville and Caputo defini-
tions. However, the definition by Khalil et al. [19] denote that the zeroth derivative
of a function does not necessarily return to the function itself. Thus, this definition
does not satisfy the identity. The strict-sense criteria for the fractional derivative are
(i) linearity, (ii) identity, (iii) backward compatibility, (iv) index law, and (v) general-
ized Leibniz rule, as considered by Ortigueira et al. [23]. According to the strict-sense
criteria, calling the definition by Khalil et al. [19] a fractional derivative could be
incorrect. As an improvement to the definition by Khalil et al. [19], Anderson and
Ulness [10] provided the following definition:

Definition 1.1. Let α be a constant defined on interval [0, 1]. Two continuous
functions, κ0 : [0, 1]× R → [0,∞) and κ1 : [0, 1]× R → [0,∞), satisfy





lim
α→0+

κ0(α, t) = 0, lim
α→0+

κ1(α, t) = 1,

lim
α→1−

κ0(α, t) = 1, lim
α→1−

κ1(α, t) = 0,
(1.1)

and {
κ0(α, t) ̸= 0, α ∈ (0, 1],

κ1(α, t) ̸= 0, α ∈ [0, 1).
(1.2)

Next, the differential operator Dα is defined as follows:

Dαf(t) = κ1(α, t)f(t) + κ0(α, t)
d

dt
f(t), (1.3)

where κ0 and κ1 are the functions that satisfy (1.1) and (1.2), respectively.

Remark 1.2. From condition (1.1), we have

lim
α→0+

Dαf(t) = D0f(t) = f(t) and lim
α→1−

Dαf(t) = D1f(t) = f ′(t).

Furthermore, for arbitrary α ∈ [0, 1] and β ∈ [0, 1], DαDβ ̸= DβDα in general. How-
ever, if the two continuous functions, κ0 and κ1, are constant, then DαDβ = DβDα.

Remark 1.3. For α ∈ (0, 1), the nonzero condition of κ1 in (1.2) (κ1(α, t) ≡ 0),
κ0(α, t) = αt1−α, is relaxed. Next, we have a special case of the definition by
Khalil et al. [19]. For that definition [19], if function f is differentiable, then
Tαf(t) = t1−αf ′(t).

Definition 1.1 is independent of fractional differentiation, and it is intended for
proportional–derivative control expressed as

x(t) = κpE(t) + κd
d

dt
E(t)

where the controller provides x at time t, κp is the proportional gain, κd is the
derivative gain, and E is the input deviation. As an application, this controller
is used in robotics (see, for example, [6, 13]). Therefore, Definition 1.1 is called
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a proportional–derivative controller. Furthermore, because Definition 1.1 is considered
independent of the fractional derivative, it is also called a conformable derivative.
However, Definition 1.1 provides certain fractional derivative properties. According
to Gao and Chi [16], if we compare the solutions of the equation using defining
formula (1.3) for κ1(α, t) = 1 − α and κ0(α, t) = αt1−α with the equation with
the Riemann–Liouville and Caputo definitions obtained by numerical simulation, the
behavior of both solutions is similar (see [16, Section 3]).

We consider the nonoscillation of conformable linear Sturm–Liouville differential
equations with the following form:

Dα[r(t)Dαx] + c(t)x = 0 (1.4)

using (1.3) in Definition 1.1, where α ∈ (0, 1] and r, c : [t0,∞) → R are continuous
functions with t0 ≥ 0 and r(t) > 0 for t ≥ t0. The uniqueness of the solution
to the initial value problem of (1.4) is guaranteed ([7, Theorem 3.2]). We define
the oscillation of the nontrivial solution of (1.4). A nontrivial solution x of (1.4)
is said to be nonoscillatory on [t0,∞) if it is eventually either positive or nega-
tive. Otherwise, the nontrivial solution x of (1.4) is said to be oscillatory. Further-
more, Sturm’s comparison and separation theorems for (1.4) have been established in
[7, Theorem 7.2] and [9, Theorem 8.3 .6], respectively. Therefore, because the oscil-
latory and nonoscillatory solutions of (1.4) are separate, if a nontrivial solution of
(1.4) is oscillatory (or nonoscillatory), then all nontrivial solutions of (1.4) are also
oscillatory (or nonoscillatory).

As a special case of (1.4), when α = 1, (1.4) becomes an ordinary second-order
linear differential equation:

(r(t)x′)′ + c(t)x = 0. (1.5)

Several results have been provided for the oscillation theory regarding (1.5) over
a long time (see [3, 24] for details). The classification of global solutions of (1.5)
into oscillatory and nonoscillatory types is based on the magnitudes of coefficients r
and c in (1.5). In particular, for (1.5), we introduce a preliminary result that extends
Wintner’s nonoscillation theorem [25], which is conventional in oscillation theory.
This result has been addressed in various studies (see, for example, [14, 15, 17, 27]).

Theorem 1.4 ([25]). Let

lim
t→∞

∫ t

t0

1

r(s)
ds = ∞ (1.6)

and

lim
t→∞

∫ t

t0

c(s)ds is convergent, (1.7)

that is,
∫∞
t0

c(s)ds < ∞. If

−3

4
< lim inf

t→∞
A1(t) ≤ lim sup

t→∞
A1(t) <

1

4
(1.8)
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then all nontrivial solutions of (1.5) are nonoscillatory, with

A1(t) =

∫ t

t0

1

r(s)
ds

∫ ∞

t

c(s)ds. (1.9)

A theorem corresponding to Theorem 1.4 is well-known and described as follows:

Theorem 1.5. Let

lim
t→∞

∫ t

t0

1

r(s)
ds < ∞. (1.10)

If

−3

4
< lim inf

t→∞
A2(t) ≤ lim sup

t→∞
A2(t) <

1

4
(1.11)

then all nontrivial solutions of (1.5) are nonoscillatory, where

A2(t) =

∫ ∞

t

1

r(s)
ds

∫ t

t0

c(s)ds. (1.12)

Upper limit 1/4 of conditions (1.8) and (1.11) in Theorems 1.4 and 1.5, respec-
tively, is a common reference value for determining whether the global solution of
Euler’s equation oscillates. This limit is known as the oscillation constant. The
global solution of Euler’s equation can be classified as an oscillatory or nonoscillatory
solution based on the oscillation constant. Therefore, the solution is an important
test equation. Additionally, 1/4 appears as a threshold in the Kneser-type oscillation
and nonoscillation criteria [20]. Wu and Sugie [27] discussed the case expressed as

lim inf
t→∞

A1(t) < −3

4
or lim inf

t→∞
A2(t) < −3

4
.

Çetinkaya and Cuchta [11] and Ishibashi [18] provided oscillation and nonoscil-
lation theorems for equations including (1.4). However, limited progress has been
achieved on the long standing oscillation and nonoscillation theorems corresponding
to (1.4). Therefore, this study focused on establishing a Wintner-type nonoscilla-
tion theorem corresponding to Theorems 1.4 and 1.5 and that can be applied to
(1.4). We provide a nonoscillation theorem for (1.4) corresponding to Theorems 1.4
and 1.5. The proof of the main theorems uses the generalized Riccati inequality
corresponding to (1.4).

This paper is organized as follows. Background on differential and integral calculus
corresponding to the conformable derivative defined by (1.3) is provided in the Ap-
pendix. Section 2 introduces the Riccati technique used to prove the main theorem. In
particular, we demonstrated that all the nontrivial solutions of (1.4) are nonoscillatory
and that the existence of a global solution to the Riccati inequality corresponding to
(1.4) is equivalent. In Section 3, we introduce the nonoscillation theorems for (1.4),
which correspond to Theorems 1.4 and 1.5. In Section 4, we use the main theorem
to provide the nonoscillatory conditions for the Euler-type conformable differential
equation. For example, we provide a nonoscillatory condition for the Euler-type con-
formable differential equation with κ1 and κ0, which is a relaxation of the nonzero
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condition (1.2) in Remark 1.2. Numerical simulations demonstrated that the constant
that appears in the nonoscillatory condition of the Euler-type conformable differential
equation is close to the oscillation constant. Furthermore, when 0 < α < 1, we pro-
vide a nonoscillatory condition for the Sturm–Liouville-type conformable differential
equation with κ1(α, t) = 1− α and κ0(α, t) = α satisfying (1.1) and (1.2). Section 5
presents our conclusions and directions of future work.

2. RICCATI CONFORMABLE DIFFERENTIAL INEQUALITY
RELATED TO STURM–LIOUVILLE TYPE

Equation (1.4) and the first-order conformable nonlinear differential inequality intro-
duced below have the following relationship.

Lemma 2.1. The following are equivalent:

(i) All nontrivial solutions to (1.4) are nonoscillatory.
(ii) A differentiable function v exists that satisfies

Dαv ≤ −c(t)− v2

r(t)
+ κ1(α, t)v

= −c(t)− 1

r(t)

(
v − 1

2
r(t)κ1(α, t)

)2

+
1

4
r(t)κ2

1(α, t)
(2.1)

for large t.
(iii) A differentiable function w exists that satisfies

Dαw ≥ c(t) +
w2

r(t)
+ κ1(α, t)w

= c(t) +
1

r(t)

(
w +

1

2
r(t)κ1(α, t)

)2

− 1

4
r(t)κ2

1(α, t)
(2.2)

for large t.

Proof. (i)⇒(ii) Assume that for any t ≥ t1, there exists t1 ≥ t0 that satisfies x(t) > 0.
We define differentiable function v as

v(t) =
r(t)Dαx(t)

x(t)
.

Then, from

0 = Dα(r(t)Dαx(t)) + c(t)x(t)

= Dα(v(t)x(t)) + c(t)x(t)

= Dαv(t)x(t) + v(t)Dαx(t)− v(t)x(t)κ1(α, t) + c(t)x(t)

= Dαv(t)x(t) +
v2(t)x(t)

r(t)
− v(t)x(t)κ1(α, t) + c(t)x(t)

=
(v2(t)
r(t)

+Dαv(t)− κ1(α, t)v(t) + c(t)
)
x(t).

Here, v satisfies inequality (2.1).
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(ii)⇒(i) Suppose that for t ∈ R and any t ≥ t0, v(t) exists such that it satisfies
inequality (2.1). Consider

Dα(r(t)Dαy) + (c(t) + C(t))y = 0, (2.3)

where

C(t) = −Dαv(t)− c(t)− v2(t)

r(t)
+ κ1(α, t)v(t) ≥ 0.

Equation (2.3) has a nonoscillatory solution of

y(t) = exp



∫ t

t0

v(s)
r(s) − κ1(α, s)

κ0(α, s)
ds




= exp

(∫ t

t0

(
v(s)

r(s)
− κ1(α, s)

)
dαs

)
= e v

r
(t, t0),

where dαs = ds/κ0(α, s) (see Appendix for the conformable exponential function,
eϕ(t, t0)). From Sturm’s separation theorem, we demonstrate that y is a solution
to (2.3) because all its nontrivial solutions (1.4) are nonoscillatory. From

Dαy(t) =
v(t)

r(t)
e v

r
(t, t0)

and

Dα(r(t)Dαy(t)) = Dα

(
r(t)

v(t)

r(t)
e v

r
(t, t0)

)

= Dαv(t)e v
r
(t, t0) + v(t)Dαe v

r
(t, t0)− v(t)e v

r
(t, t0)κ1(α, t)

= Dαv(t)e v
r
(t, t0) +

v2(t)

r(t)
e v

r
(t, t0)− v(t)e v

r
(t, t0)κ1(α, t),

we see that

Dα(r(t)Dαy(t)) + (c(t) + C(t))y(t)

= Dαv(t)e v
r
(t, t0) +

v2(t)

r(t)
e v

r
(t, t0)− v(t)e v

r
(t, t0)κ1(α, t)

+

(
c(t)−Dαv(t)− c(t)− v2(t)

r(t)
+ v(t)κ1(α, t)

)
e v

r
(t, t0)

= 0.

Therefore, y is a solution to (2.3). By comparing the coefficients of (1.4) and (2.3),
we find that

c(t) + C(t) ≥ c(t),

Thus, according to Sturm’s comparison theorem, all nontrivial solutions of (1.4) are
nonoscillatory.
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(ii)⇒(iii) Suppose that a differentiable function v satisfies inequality (2.1). In this
case, if differentiable function w is w(t) = −v(t), w satisfies inequality (2.2).

(iii)⇒(ii) Suppose that a differentiable function w satisfies inequality (2.2). In this
case, if differentiable function v is v(t) = −w(t), v satisfies inequality (2.1).

Remark 2.2. When α = 1, inequality (2.1) becomes the typical Riccati inequality
([3, Lemma 2.2.1]). Therefore, (2.1) and (2.2) are Riccati inequalities that correspond
to the conformable derivative.

3. WINTNER-TYPE NONOSCILLATION THEOREMS

The Wintner-type nonoscillation theorem for (1.4) is described as follows.

Theorem 3.1. Suppose that

lim
t→∞

∫ t

t0

e0(t, s)

r(s)
dαs = ∞ (3.1)

and

lim
t→∞

∫ t

t0

c(s)e0(t0, s)dαs < ∞ (3.2)

Let

B1(t) =

∫ t

t0

e0(t, s)

r(s)
dαs

∫ ∞

t

c(s)e0(t, s)dαs. (3.3)

Next, we obtain the following:

(i) If r(t)κ1(α, t)
∫ t

t0
r−1(s)e0(t, s)dαs < 1 and

−3

4
+ r(t)κ1(α, t)

∫ t

t0

e0(t, s)

r(s)
dαs ≤ B1(t) ≤

1

4
(3.4)

then all nontrivial solutions of (1.4) are nonoscillatory.

(ii) If r(t)κ1(α, t)
∫ t

t0
r−1(s)e0(t, s)dαs > 1 and

1

4
≤ B1(t) ≤ −3

4
+ r(t)κ1(α, t)

∫ t

t0

e0(t, s)

r(s)
dαs (3.5)

then all nontrivial solutions of (1.4) are nonoscillatory.

Remark 3.2. For condition (i) of Theorem 3.1, if α = 1, then e0(t, s) = 0 and
dαs = ds. Thus, conditions (3.1), (3.2), and (3.3) correspond to conditions (1.6)
and (1.7) and match (1.9). Furthermore, condition (3.4) corresponds to condition
(1.8) in Theorem 1.4. Theorem 3.1(ii) is a unique result of the conformable linear
differential equation given by (1.4).

The counterpart nonoscillation theorem for condition (3.1) in Theorem 3.1
is described as follows.
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Theorem 3.3. Suppose that

lim
t→∞

∫ t

t0

e0(t0, s)

r(s)
dαs < ∞, (3.6)

and let

B2(t) =

∫ ∞

t

e0(t, s)

r(s)
dαs

∫ t

t0

c(s)e0(t, s)dαs. (3.7)

If

−3

4
− r(t)κ1(α, t)

∫ ∞

t

e0(t, s)

r(s)
dαs ≤ B2(t) ≤

1

4
(3.8)

then all nontrivial solutions of (1.4) are nonoscillatory.

Remark 3.4. For the conditions of Theorem 3.3, if α = 1, then e0(t, s) = 0 and
dαs = ds, and conditions (3.6) and (3.7) match conditions (1.10) and (1.12)
of Theorem 1.5, respectively. Additionally, condition (3.8) corresponds to condition
(1.11) in Theorem 1.5.

We prove Theorems 3.1 and 3.3 using Lemma 2.1.

Proof of Theorem 3.1. First, we prove (i). If we can find the global solution v of
Riccati inequality (2.1) corresponding to (1.4), we can prove Theorem 3.1 using
Lemma 2.1. To determine global solution v, consider the following fitness differential
inequality:

Dαρ(t) ≤ − 1

r(t)

(
ρ(t) + C(t)− 1

2
r(t)κ1(α, t)

)2

+
1

4
r(t)κ2

1(α, t) (3.9)

related to the inequality (2.1), where

C(t) =

∫ ∞

t

c(s)e0(t, s)dαs.

Finding global solution v to Riccati inequality (2.1) is equivalent to finding global solu-
tion ρ to fitness differential inequality (3.9). Let v(t) be a differentiable global solution
that satisfies Riccati inequality (2.1) and

ρ(t) = v(t)− C(t).
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Next, for inequality (2.1) and differentiable ρ,

Dαρ(t) = Dαv(t)−DαC(t)

≤ −c(t)− 1

r(t)

(
ρ(t) + C(t)− 1

2
κ1(α, t)r(t)

)2

+
1

4
r(t)κ2

1(α, t)

−Dα

(∫ ∞

t1

c(s)e0(t, s)dαs−
∫ t

t1

c(s)e0(t, s)dαs

)

= −c(t)− 1

r(t)

(
ρ(t) + C(t)− 1

2
κ1(α, t)r(t)

)2

+
1

4
r(t)κ2

1(α, t)

−Dα

(∫ ∞

t1

c(s)e0(t, s)dαs

)
+Dα

(∫ t

t1

c(s)e0(t, s)dαs

)

= −c(t)− 1

r(t)

(
ρ(t) + C(t)− 1

2
κ1(α, t)r(t)

)2

+
1

4
r(t)κ2

1(α, t)

−Dα

(∫ ∞

t1

c(s)e0(t, t1)e0(t1, s)dαs

)
+ c(t)

= − 1

r(t)

(
ρ(t) + C(t)− 1

2
κ1(α, t)r(t)

)2

+
1

4
r(t)κ2

1(α, t)

−Dα

(
e0(t, t1)

∫ ∞

t1

c(s)e0(t1, s)dαs

)
.

From condition (3.2) and Dαe0(t, t1) = 0, we have

Dα

(
e0(t, t1)

∫ ∞

t1

c(s)e0(t1, s)dαs

)
=

∫ ∞

t1

c(s)e0(t1, s)dαs (D
αe0(t, t1)) = 0,

obtaining inequality (3.9). By contrast, suppose that ρ(t) exists satisfying inequality
(3.9). In this case, if we set v(t) = ρ(t) +C(t), we obtain inequality (2.1). Therefore,
we demonstrated the existence of a global solution to inequality (3.9). For any t ≥ t0,
we define function ρ as

ρ(t) =
1

4
∫ t

t0

e0(t,s)
r(s) dαs

.
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In this case, the left-hand side of inequality (3.9) is expressed as follows:

Dαρ(t) =
1

4
Dα


 1∫ t

t0

e0(t,s)
r(s) dαs




=
1

4





Dα(1)
∫ t

t0

e0(t,s)
r(s) dαs−Dα

(∫ t

t0

e0(t,s)
r(s) dαs

)

(∫ t

t0

e0(t,s)
r(s) dαs

)2 +
κ1(α, t)∫ t

t0

e0(t,s)
r(s) dαs





= − 1

4r(t)





1
(∫ t

t0

e0(t,s)
r(s) dαs

)2 − 2r(t)κ1(α, t)∫ t

t0

e0(t,s)
r(s) dαs





.

Furthermore, if we complete the square, the left-hand side of inequality (3.9) becomes

Dαρ(t) = −

(
1− r(t)κ1(α, t)

∫ t

t0

e0(t,s)
r(s) dαs

)2

4r(t)
(∫ t

t0

e0(t,s)
r(s) dαs

)2 +
1

4
r(t)κ2

1(α, t). (3.10)

By contrast, the right-hand side of inequality (3.9) is expressed as follows:

− 1

r(t)

(
ρ(t) + C(t)− 1

2
κ1(α, t)r(t)

)2

+
1

4
r(t)κ2

1(α, t)

= −

(
1

4
+
∫ t

t0

e0(t,s)
r(s) dαsC(t)− 1

2
r(t)κ1(α, t)

∫ t

t0

e0(t,s)
r(s) dαs

)2

r(t)
(∫ t

t0

e0(t,s)
r(s) dαs

)2

+
1

4
r(t)κ2

1(α, t)

and the left-hand side of the inequality (3.9) is given by (3.10). Thus, we obtain the
following expression:

1

4

(
1− r(t)κ1(α, t)

∫ t

t0

e0(t, s)

r(s)
dαs

)2

≥
(
1

4
+

∫ t

t0

e0(t, s)

r(s)
dαsC(t)− 1

2
r(t)κ1(α, t)

∫ t

t0

e0(t, s)

r(s)
dαs

)2

.

(3.11)

Function ρ being a global solution to inequality (3.9) is equivalent to inequality (3.11)
holding. We can confirm that inequality (3.11) holds by assuming

r(t)κ1(α, t)

∫ t

t0

r−1(s)e0(t, s)dαs < 1
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and condition (3.4). Moreover, by finding global solution ρ that satisfies inequality
(3.9), global solution v satisfying inequality (2.1) is expressed as follows:

v(t) =
1

4
∫ t

t0

e0(t,s)
r(s) dαs

+

∫ ∞

t

c(s)e0(t, s)dαs. (3.12)

Therefore, from Lemma 2.1, all nontrivial solutions of equation (1.4) are nonoscilla-
tory.

Next, we prove (ii) of Theorem 3.1 in the same manner as we proved (i). Function ρ
is a global solution of inequality (3.9) and inequality (3.11) holds. From condition (ii),

r(t)κ1(α, t)

∫ t

t0

r−1(s)e0(t, s)dαs > 1

and (3.5), and inequality (3.11) holds. Therefore, because global solution v that
satisfies inequality (2.1) is (3.12), by Lemma 2.1, all nontrivial solutions of (1.4) are
nonoscillatory.

Proof of Theorem 3.3. Consider the following fitness differential inequality:

Dαρ̃(t) ≤ − 1

r(t)

(
ρ̃(t)− C̃(t)− 1

2
r(t)κ1(α, t)

)2

+
1

4
r(t)κ2

1(α, t) (3.13)

related to inequality (2.1), where

C̃(t) =

∫ t

t0

c(s)e0(t, s)dαs.

Finding the global solution v of Riccati inequality (2.1) is equivalent to finding global
solution ρ̃ of fitness differential inequality (3.13). Let v(t) be a differentiable global so-
lution that satisfies Riccati inequality (2.1) and let it be

ρ̃(t) = v(t) + C̃(t).

Because inequality (2.1) and differentiable ρ̃ become

Dαρ̃(t) = Dαv(t) +DαC̃(t)

≤ −c(t)− 1

r(t)

(
ρ̃(t)− C̃(t)− 1

2
κ1(α, t)r(t)

)2

+
1

4
r(t)κ2

1(α, t)

+Dα

(∫ t

t0

c(s)e0(t, s)dαs

)

= −c(t)− 1

r(t)

(
ρ̃(t)− C̃(t)− 1

2
κ1(α, t)r(t)

)2

+
1

4
r(t)κ2

1(α, t) + c(t)

= − 1

r(t)

(
ρ̃(t)− C̃(t)− 1

2
κ1(α, t)r(t)

)2

+
1

4
r(t)κ2

1(α, t),
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we obtain inequality (3.13). By contrast, suppose that ρ̃(t) satisfies inequality
(3.13). In this case, by letting v(t) = ρ̃(t) − C̃(t), we obtain inequality (2.1).
Therefore, we demonstrated the existence of a global solution to inequality (3.13).
For any t ≥ t0, let function ρ̃ be

ρ̃(t) = − 1

4
∫∞
t

e0(t,s)
r(s) dαs

.

Considering condition (3.6), we can calculate the left-hand side of inequality (3.13)
from

Dα

(∫ ∞

t

e0(t, s)

r(s)
dαs

)
= Dα

(∫ ∞

t1

e0(t, s)

r(s)
dαs−

∫ t

t1

e0(t, s)

r(s)
dαs

)

= Dα

(∫ ∞

t1

e0(t, t1)e0(t1, s)

r(s)
dαs

)
−Dα

(∫ t

t1

e0(t, s)

r(s)
dαs

)

=

∫ ∞

t1

e0(t1, s)

r(s)
dαs(D

αe0(t, t1))−
1

r(t)

= − 1

r(t)

as follows:

Dαρ̃(t) = −1

4
Dα


 1∫∞

t
e0(t,s)
r(s) dαs




= −1

4





Dα(1)
∫∞
t

e0(t,s)
r(s) dαs−Dα

(∫∞
t

e0(t,s)
r(s) dαs

)

(∫∞
t

e0(t,s)
r(s) dαs

)2 +
κ1(α, t)∫∞

t
e0(t,s)
r(s) dαs





= − 1

4r(t)





1
(∫∞

t
e0(t,s)
r(s) dαs

)2 +
2r(t)κ1(α, t)∫∞
t

e0(t,s)
r(s) dαs





.

Furthermore, if we complete the square, the left-hand side of inequality (3.13) becomes

Dαρ̃(t) = −

(
1 + r(t)κ1(α, t)

∫∞
t

e0(t,s)
r(s) dαs

)2

4r(t)
(∫∞

t
e0(t,s)
r(s) dαs

)2 +
1

4
r(t)κ2

1(α, t). (3.14)
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By contrast, the right-hand side of the inequality (3.13) is expressed as follows:

− 1

r(t)

(
ρ̃(t)− C̃(t)− 1

2
κ1(α, t)r(t)

)2

+
1

4
r(t)κ2

1(α, t)

= −

(
1

4
+
∫∞
t

e0(t,s)
r(s) dαs C̃(t) +

1

2
r(t)κ1(α, t)

∫∞
t

e0(t,s)
r(s) dαs

)2

r(t)
(∫∞

t
e0(t,s)
r(s) dαs

)2

+
1

4
r(t)κ2

1(α, t)

and the left-hand side of inequality (3.13) becomes (3.14). Thus, we obtain the
following:

1

4

(
1 + r(t)κ1(α, t)

∫ ∞

t

e0(t, s)

r(s)
dαs

)2

≥
(
1

4
+

∫ ∞

t

e0(t, s)

r(s)
dαs C̃(t) +

1

2
r(t)κ1(α, t)

∫ ∞

t

e0(t, s)

r(s)
dαs

)2

.

(3.15)

Therefore, function ρ̃ being a global solution to inequality (3.13) is equivalent in-
equality (3.15) holding. We can confirm that inequality (3.15) holds because of the
following:

1 + r(t)κ1(α, t)

∫ ∞

t

r−1(s)e0(t, s)dαs > 0

and assuming condition (3.8). Furthermore, by finding global solution ρ̃ that sat-
isfies inequality (3.13), we know that global solution v satisfying inequality (2.1) is
expressed as follows:

v(t) = − 1

4
∫∞
t

e0(t,s)
r(s) dαs

−
∫ t

t0

c(s)e0(t, s)dαs.

Therefore, from Lemma 2.1, all nontrivial solutions of (1.4) are nonoscillatory.

4. EULER-TYPE CONFORMABLE DIFFERENTIAL EQUATION

In this section, we present the application examples of the main theorem. First,
consider an example of (1.4), which relaxes nonzero condition (1.2).

Example 4.1. Consider the following conformable linear Sturm–Liouville differential
equation:

DαDαx+
λ

t2α
x = 0, t ≥ t0 = 1, (4.1)

where α ∈ (0, 1), λ ∈ R, κ1(α, t) ≡ 0, and κ0(α, t) = αt1−α. If λ∗ ≥ λ, then all
nontrivial solutions of (4.1) are nonoscillatory, where λ∗ = α4/4.



740 Kazuki Ishibashi

Proof. To show that all nontrivial solutions of (4.1) for λ∗ ≥ λ do not oscillate,
we should show that all nontrivial solutions of equation

DαDαx+
λ∗
t2α

x = 0, t ≥ t0 = 1 (4.2)

are nonoscillatory because if we use Sturm’s comparison theorem for (4.2) and (4.1),
all the nontrivial solutions of (4.1) for λ∗ ≥ λ are nonoscillatory. Therefore, we reveal
that all the nontrivial solutions of (4.2) are nonoscillatory. Comparing (4.2) and (1.4)
yields the following:

r(t) ≡ 1 and c(t) =
λ∗
t2α

.

We apply Theorem 3.1 to coefficient functions r and c in (4.2). Considering

κ1(α, t) ≡ 0 and κ0(α, t) = αt1−α,

because e0(t, s) = 1 and dαs = ds/αs1−α, we have the following expression:

r(t)κ1(α, t)

∫ t

t0

e0(t, s)

r(s)
dαs = 0 < 1

Furthermore, we have the following:

lim
t→∞

∫ t

1

e0(t, s)

r(s)
dαs =

1

α
lim
t→∞

∫ t

1

1

s1−α
ds =

1

α2
lim
t→∞

(tα − 1) = ∞

and

lim
t→∞

∫ t

1

c(s)e0(t0, s)dαs =
λ∗
α

lim
t→∞

∫ t

1

1

sα+1
ds

= −λ∗
α2

lim
t→∞

(
1

tα
− 1

)
=

λ∗
α2

.

Thus, conditions (3.1) and (3.2) of Theorem 3.1 are satisfied. FunctionB1 is calculated
as follows:

B1(t) =

∫ t

1

e0(t, s)

r(s)
dαs

∫ ∞

t

c(s)e0(t, s)dαs

=
λ∗
α4tα

(tα − 1) =
1

4
− 1

4tα
<

1

4
,

and because 1/tα is a monotonically decreasing function, we obtain the following:

B1(t) > − 1

4tα
≥ −1

4
> −3

4

from −1/tα ≥ −1 for any t ≥ 1. Hence, B1 satisfies condition (3.4). Therefore, all
the nontrivial solutions of (4.2) are nonoscillatory. Furthermore, assuming λ∗ ≥ λ,
we obtain relation

λ∗
t2α

≥ λ

t2α

for the coefficients of (4.2) and (4.1). According to Sturm’s comparison theorem,
all the nontrivial solutions of (4.1) are nonoscillatory.
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Remark 4.2. If α = 1, (4.1) becomes a typical Euler equation, and λ∗ = 1/4 is its
oscillation constant.

We numerically simulated the global solution of (4.2). Figure 1 displays the six
solution curves for (4.2) from initial value (x(1), Dαx(1)) = (0, 1), where the green,
red, orange, black, magenta, and blue curves are the solutions for α = 1, α = 0.9,
α = 0.8, α = 0.7, α = 0.6, and α = 0.5. Because no solution curve has a zero crossing,
we can confirm that all nontrivial solution curves are nonoscillatory.

α = 1

α = 0.9

α = 0.8

α = 0.7

α = 0.6

α = 0.5

1000 2000 3000 4000 5000
t

100

200

300

400

500

600

x

Fig. 1. Solution curves of (4.2) for α = 1, 0.9, 0.8, 0.7, 0.6, 0.5

We evaluated the additional values of α. Figure 2 displays the six solution curves
for (4.2) from initial value (x(1), Dαx(1)) = (0, 1), where the green, red, orange, black,
magenta, and blue curves are the solutions for α = 0.4, α = 0.3, α = 0.2, α = 0.1,
α = 0.05, and α = 0.03. As displayed in Figure 1, no solution curve has a zero
crossing, which confirms the nonoscillatory solutions. Furthermore, the numerical
results reveal that when α is small, an initial steep slope of the solution curve appears
and subsequently gradually reduces. Furthermore, as α approaches 1, the slope of the
solution curve increases.

Next, we determined whether the global solution of (4.1) is nonoscillatory or
oscillatory for λ > λ∗. Specifically, we numerically simulated the global solution of
(4.1) when α = 1/2 and λ = λ∗+0.1. Figure 3 displays the solution curve for α = 1/2
and λ = λ∗+0.1 starting from initial value (x(1), Dαx(1)) = (0, 1). This phenomenon
is the global solution curve of (4.1) for α = 1/2 and λ = λ∗ + 0.1, and it shows one
zero. Therefore, the global solution to (4.1) for α = 1/2 and λ = λ∗+0.1 is predicted
to oscillate. Generally, all the nontrivial solutions to (4.1) for λ > λ∗ oscillate.

Next, consider an example in which nonzero condition (1.2) is not relaxed.
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α = 0.4

α = 0.3

α = 0.2

α = 0.1

α = 0.05

α = 0.03

1000 2000 3000 4000 5000
t

100

200

300

400

500

600

x

Fig. 2. Solution curves of (4.2) for α = 0.4, 0.3, 0.2, 0.1, 0.05, 0.03

100 200 300 400 500
t

-10

-5

5

10

x

Fig. 3. Solution curve of (4.1) for α = 1/2 and λ = λ∗ + 0.1

Example 4.3. Consider the following conformable linear Sturm–Liouville differential
equation:

Dα

[
1

e
1−α
α t

Dαx

]
+

λ̃

e
1−α
α t tα+1

x = 0, t ≥ t0 = 1, (4.3)

where α ∈ (0, 1), λ̃ ∈ R, κ1(α, t) = 1 − α, and κ0(α, t) = α. If λ̃∗ ≥ λ̃, then all
nontrivial solutions of (4.3) are nonoscillatory, where λ̃∗ = {α2(1− α)}/2.

Proof. To show that all nontrivial solutions of (4.3) when λ̃∗ ≥ λ̃ do not
oscillate, we must show that all nontrivial solutions of the following equation are
nonoscillatory:
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Dα

[
1

e
1−α
α t

Dαx

]
+

λ̃∗

e
1−α
α t tα+1

x = 0, t ≥ t0 = 1. (4.4)

This result is because if we use Sturm’s comparison theorem for (4.4) and (4.3), all
the nontrivial solutions of (4.3) for λ̃∗ ≥ λ̃ are nonoscillatory. Therefore, we reveal
that all the nontrivial solutions of (4.4) are nonoscillatory. Comparing (4.4) and (1.4)
yields the following:

r(t) =
1

e
1−α
α t

and c(t) =
λ̃∗

e
1−α
α t tα+1

.

We apply Theorem 3.1 to coefficient functions r and c of (4.4). Considering κ1(α, t) =
1− α, κ0(α, t) = α, and

e0(t, s) = e−
∫ t
s

1−α
α dτ =

e
1−α
α s

e
1−α
α t

,

we have the following:

r(t)κ1(α, t)

∫ t

t0

e0(t, s)

r(s)
dαs =

1

2
− e

2(1−α)
α

2e
2(1−α)

α t
<

1

2
< 1.

Furthermore, we have the following:

lim
t→∞

∫ t

1

e0(t, s)

r(s)
dαs = lim

t→∞
1

α e
1−α
α t

∫ t

1

e
2(1−α)

α sds

= lim
t→∞

1

2(1− α)e
1−α
α t

(e
2(1−α)

α t − e
2(1−α)

α ) = ∞

and

lim
t→∞

∫ t

1

c(s)e0(t0, s)dαs = lim
t→∞

λ̃∗

α e
1−α
α

∫ t

1

1

sα+1
ds

= lim
t→∞

λ̃∗

α2 e
1−α
α

(
1− 1

tα

)
=

λ̃∗

α2 e
1−α
α

.

Thus, conditions (3.1) and (3.2) of Theorem 3.1 are satisfied. FunctionB1 is calculated
as follows:

B1(t) =

∫ t

1

e0(t, s)

r(s)
dαs

∫ ∞

t

c(s)e0(t, s)dαs

=
λ̃∗

2α2(1− α)tα e
2(1−α)

α t

(
e

2(1−α)
α t − e

2(1−α)
α

)

=
1

4tα
− e

2(1−α)
α

4tα e
2(1−α)

α t
≤ 1

4tα
≤ 1

4
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and because 1/tα and 1/e
2(1−α)

α t are monotonically decreasing functions, we obtain
the following:

B1(t) > − e
2(1−α)

α

4tα e
2(1−α)

α t
≥ −1

4
> −3

4
+

1

2
− e

2(1−α)
α

2e
2(1−α)

α t

= −3

4
+ r(t)κ1(α, t)

∫ t

t0

e0(t, s)

r(s)
dαs

from−1/tαe
2(1−α)

α t ≥ −1/e
2(1−α)

α for any t ≥ 1. Therefore, B1 satisfies condition (3.4).
Therefore, because all nontrivial solutions to (4.4) are nonoscillatory, all nontrivial
solutions to (4.3) with λ̃∗ ≥ λ̃ are nonoscillatory.

We subsequently numerically simulated the global solution of (4.4). Figure 4
displays the seven solution curves for (4.4) from initial value (x(1), Dαx(1)) = (0, 1),
where the green, red, orange, black, magenta, blue, and purple curves are the solutions
for α = 0.9, α = 0.8, α = 0.7, α = 0.6, α = 0.5, α = 0.4, and α = 0.3, respectively.
Because no solution curve has a zero crossing, we can confirm nonoscillatory solutions.
Furthermore, the global solution of (4.4) from initial value (x(1), Dαx(1)) = (0, 1)
converges to a positive constant. Because the value of α changes from 0.9 to 0.6, for
the equation with initial value (x(1), Dαx(1)) = (0, 1), the global solution of (4.4)
converges to smaller positive values. However, with the value of α changing from 0.5
to 0.3, for the equation with initial value (x(1), Dαx(1)) = (0, 1), the global solution
of (4.4) converges to large positive values.

α = 0.9

α = 0.8

α = 0.7

α = 0.6

α = 0.5

α = 0.4

α = 0.3

20 40 60 80 100
t

5

10

15

20

25

x

Fig. 4. Solution curves of (4.4) for α = 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3

For Example 4.1, we determined whether the behavior of the global solution of
(4.3) for λ̃ > λ̃∗ is nonoscillatory or oscillatory. Specifically, we numerically simulated
the global solution of (4.3) for α = 1/2 and λ̃ = λ̃∗ + 0.7. Figure 5 displays the
solution curve for α = 1/2 and λ̃ = λ̃∗+0.7 from initial value (x(1), Dαx(1)) = (0, 1).
This result is the global solution of (4.3) for α = 1/2 and λ̃ = λ̃∗ + 0.7, and it
has one zero. Figure 5 indicates that the global solution to (4.3) for α = 1/2 and
λ̃ = λ̃∗ + 0.7 probably oscillates. However, determining whether the global solution
of (4.3) oscillates for λ̃ > λ̃∗ is challenging even when using a numerical simulation.
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Fig. 5. Solution curve of (4.4) for α = 1/2 and λ = λ∗ + 0.7

5. CONCLUSION

We extended Theorems 1.4 and 1.5 in oscillation theory to obtain results that can
be applied to (1.4). The main results of Theorems 3.1 and 3.3 can be proven by
introducing the Riccati-type inequality corresponding to (1.4). As a simple example
of (i) in Theorem 3.1, this theorem is applied to Euler-type equations. However,
the oscillation constants in (4.1) and (4.3) requires discussion.

As a further development, lower bounds

−3

4
+ r(t)κ1(α, t)

∫ t

t0

e0(t, s)

r(s)
dαs ≤ B1(t)

and

−3

4
− r(t)κ1(α, t)

∫ ∞

t

e0(t, s)

r(s)
dαs ≤ B2(t)

of Theorems 3.1(i) and 3.3 to be improved in the future. Similarly, Moore [22] and
Wray [26] derived a nonoscillation theorem that can extend the lower bounds of
Theorems 1.4 and 1.5.

6. BASIC PROPERTIES ON CONFORMABLE CALCULUS

In this section, the background on conformable calculus for (1.3) of Definition 1.1 is
summarized [10].

Theorem 6.1 ([10]). Let α ∈ (0, 1], points s, t ∈ R with s ≤ t, and function
ϕ : [s, t] → R be continuous. Furthermore, let κ0, κ1 : [0, 1]×R → [0,∞) be continuous
and satisfy (1.1) and (1.2), with ϕ/κ0 and κ1/κ0 being Riemann integrable on [s, t].
Next, the exponential function with respect to Dα in (1.3) is defined as follows:

eϕ(t, s) := e
∫ t
s

ϕ(τ)−κ1(α,τ)

κ0(α,τ)
dτ
, e0(t, s) = e

−
∫ t
s

κ1(α,τ)

κ0(α,τ)
dτ
, (6.1)

and
Dαeϕ(t, s) = ϕ(t)eϕ(t, s), Dαe0(t, s) = 0.
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Definition 6.2 ([10]). Let α ∈ (0, 1] and t0 ∈ R. The antiderivative is defined as
follows: ∫

Dαf(t)dαt = f(t) + ce0(t, t0), c ∈ R.

Similarly, the integral of f over [a, b] is defined as follows:

∫ t

a

f(s)e0(t, s)dαs :=

∫ t

a

f(s)e0(t, s)

κ0(α, s)
ds, dαs :=

1

κ0(α, s)
ds.

Theorem 6.3 ([10]). Let conformable differential operator Dα be expressed as (1.3),
with α∈ [0, 1]. Let function ϕ : [s, t]→R be continuous. Let κ0, κ1 : [0, 1]× R → [0,∞)
be continuous and satisfy (1.1) and (1.2). We assume that functions f and g are
differentiable as needed. Next,

(i) Dα[kf(t) + lg(t)] = kDαf(t) + lDαg(t) for all k, l ∈ R,
(ii) Dαk = kκ1(α, t) for all constant k ∈ R,
(iii) Dα[f(t)g(t)] = f(t)Dαg(t) + g(t)Dαf(t)− f(t)g(t)κ1(α, t),

(iv) Dα[f(t)/g(t)] = g(t)Dαf(t)−f(t)Dαg(t)
g2(t) + f(t)

g(t)κ1(α, t),

(v) for α ∈ (0, 1] and exponential function e0 given in (6.1), we have

Dα

[∫ t

a

f(s)e0(t, s)dαs

]
= f(t), dαs =

1

κ0(α, s)
ds.
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