PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Fractional order PIλDµA controller design based on Bode’s ideal function

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The fractional order proportional, integral, derivative and acceleration (PIλDµA) controller is an extension of the classical PIDA controller with real rather than integer integration action order λ and differentiation action order µ. Because the orders λ and µ are real numbers, they will provide more flexibility in the feedback control design for a large range of control systems. The Bode’s ideal transfer function is largely adopted function in fractional control systems because of its iso-damping property which is an essential robustness factor. In this paper an analytical design technique of a fractional order PIλDµA controller is presented to achieve a desired closed loop system whose transfer function is the Bode’s ideal function. In this design method, the values of the six parameters of the fractional order PIλDµA controllers are calculated using only the measured step response of the process to be controlled. Some simulation examples for different third order motor models are presented to illustrate the benefits, the effectiveness and the usefulness of the proposed fractional order PIλDµA controller tuning technique. The simulation results of the closed loop system obtained by the fractional order PIλDµA controller are compared to those obtained by the classical PIDA controller with different design methods found in the literature. The simulation results also show a significant improvement in the closed loop system performances and robustness using the proposed fractional order PIλDµA controller design.
Rocznik
Strony
425--458
Opis fizyczny
Bibliogr. 52 poz., rys., tab., wzory
Twórcy
  • Laboratoire de Traitement du Signal, Département d’Electronique, Université des Frères Mentouri - constantine, Route Ain El-bey, Constantine 25011, Algeria
  • Laboratoire de Traitement du Signal, Département d’Electronique, Université des Frères Mentouri - constantine, Route Ain El-bey, Constantine 25011, Algeria
Bibliografia
  • [1] D.J. Wang: Further results on the synthesis of PID controllers. IEEE Transactions on Automatic Control, 52(6), (2007), 1127-1132. DOI: 10.1109/TAC.2007.899045.
  • [2] K.J. Astrom and T. Hagglund: PID Controllers: theory, design and tuning. Instrument Society of America, Research Triangle Park, North Carolina, U.S.A, 1995.
  • [3] J.G. Ziegler and N.B. Nichols: Optimum settings for automatic controllers. Transactions of the ASME, 64(8), (1942), 759-768.
  • [4] R.C. Dorf and D.R. Miller: A method for enhanced PID controller design. Journal of Robotics and Automation, 6 (1991), 41-47.
  • [5] S. Jung and R.C. Dorf: Analytic PIDA controller design technique for a third order system. Proceedings of the 35𝑡ℎ IEEE Conference on Decision and Control, (1996), 2513-2518. DOI: 10.1109/CDC.1996.573472.
  • [6] P. Ukakimaparn, P. Pannil, P. Boonchuay and T. Trisuwannawat: PIDA controller designed by Kitti’s method. ICCAS-SICE 2009 (ICROS-SICE International Joint Conference) Fukuoka, Japan, (2009), 1547-1550.
  • [7] K. Smerpitak, P. Ukakimaparn, T.Trisuwannawat and P. La-Orsri: Discrete-time PIDA controller designed by Kitti’s method with bilinear transform. 2𝑡ℎ International Conference on Control, Automation and Systems (ICCAS), (2012), 1585-1590.
  • [8] S. Sornmuang and S. Sujitjorn: GA-based PIDA control design optimization with an application to AC motor speed control, International Journal of Mathematics and Computers in Simulation, 4(3), (2010), 67-80.
  • [9] D. Puangdownreong: Application of current search to optimum PIDA controller design. Intelligent Control and Automation, 3 (2012), 303-312. DOI: 10.4236/ica.2012.34035.
  • [10] D.K. Sambariya and D. Paliwal: Optimal design of PIDA controller using firefly algorithm for AVR power system. International Conference on Computing, Communication and Automation (ICCCA), (2016). DOI: 10.1109/CCAA.2016.7813859.
  • [11] D.K. Sambariya and D. Paliwal: Design of PIDA controller using bat algorithm for AVR power system. Advances in Energy and Power, 4(1), (2016), 1-6. DOI: 10.13189/aep.2016.040101.
  • [12] C.U. Thaiwasin, S. Sujitjorn, Y. Prempraneerach and J. Ngamwiwit: Torsional resonance suppression via PIDA controller. Proceedings of TENCON 2000, (2000), 498-503. DOI: 10.1109/TENCON.2000.892316.
  • [13] S. Sunisa and S. Sarawut: GA-based PIDA control design optimization with an application to AC motor speed control. International Journal of Mathematics and Computers in Simulation, 4(3), (2010).
  • [14] D.Y. Ha, I.Y. Lee, Y.S. Cho, Y.D. Lim and B.K. Choi: The design of PIDA controller with pre-compensator. 2001 IEEE International Symposium on Industrial Electronics Proceedings (Cat. No. 01TH8570) (2001), 798-804.
  • [15] D.K. Sambariya and D. Paliwal: Comparative design and analysis of PIDA controller using Kitti’s and Jung-Dorf approach for third order practical systems. British Journal of Mathematics & Computer Science, 16(5), (2016), 1-16. DOI: 10.9734/BJMCS/2016/26223.
  • [16] K. Anand and A. MdNishat: A PID and PIDA controller design for an AVR system using frequency response matching. International Journal of Innovative Technology and Exploring Engineering, 8(10), (2019), 1675-1681. DOI: 10.35940/ijitee.J8907.0881019.
  • [17] K. Mahendra and V.H. Yogesh: Robust IMC-PIDA controller design for load frequency control of a time delayed power system. 58𝑡ℎ IEEE Conference on Decision and Control, (2019). DOI: 10.1109/CDC40024.2019.9029259.
  • [18] K. Mahaendra and H. Yogeshv: Robust CDA-PIDA control scheme for load frequency control of interconnected power systems. IFAC paper on line, 51(4), (2018), 616-621. DOI: 10.1016/j.ifacol.2018.06.164.
  • [19] T. Chaiyo, L. Kittisak, P. Deacha, S. Supaporn, H. Sarot and N. Auttarat: Application of bat-inspired algorithm to optimal PIDA controller design for liquid-level system. International Electrical Engineering Congress IEECON 2018, (2018). DOI: 10.1109/IEECON.2018.8712168.
  • [20] N. Auttarat, T. Chaiyo and P. Deacha: Application of spiritual search to optimal PIDA controller design for cardiac pacemaker. 4𝑡ℎ International Conference on Digital Arts, Media, (2019). DOI: 10.1109/ECTI-NCON.2019.8692275.
  • [21] P. Noppadol, P. Deacha, T. Chaiyo and H. Sarot: Obtaining optimal PIDA controller for temperature control of electric furnace system via flower pollination algorithm. WSEAS Transactions on Systems and Control, 14 (2019), 1-7.
  • [22] I. Podlubny: Fractional Differential Equations, Academic Press, San Diego, 1999.
  • [23] C.A. Monje, Y.Q. Chen, B.M. Vinagre, D. Xue and V. Feliu: Fractional-order systems and controls: Fundamentals and Applications. Sringer, 2010.
  • [24] K. Bettou and A. Charef: Control quality enhancement using fractional PI𝜆D𝜇 controller. International Journal of System Sciences, 40(8), (2009), 875-888. DOI: 10.1080/00207720902974546.
  • [25] D. Valério and J.S.D. Costa: Tuning of fractional PID controllers with Ziegler Nichols type rules. Signal Processing, 86(10), (2006), 2771-2784. DOI: 10.1016/j.sigpro.2006.02.020.
  • [26] F. Padula and A. Visioli: Tuning rules for optimal PID and fractional order PID controllers. Journal of Process Control, 21(1), (2011), 69-81. DOI: 10.1016/j.jprocont.2010.10.006.
  • [27] P.D. Mandić, T.B. Šekara, M.P. Lazarević and M. Boşković: Dominant pole placement with fractional order PID controllers: D-decomposition approach. ISA Transactions, (2017), 67-76. DOI: 10.1016/j.isatra.2016.11.013.
  • [28] B. Maâmar and M. Rachid: IMC-PID fractional order filter controllers design for integer order systems. ISA Transactions, 53(5), (2014), 1620-1628. DOI: 10.1016/j.isatra.2014.05.007.
  • [29] M. Bettayeb and R. Mansouri: Fractional IMC-PID filter controllers design for non-integer order systems. Journal of Process Control, 24(4), (2014), 261-271. DOI: 10.1016/j.jprocont.2014.01.014.
  • [30] R.S. Barbosa, J.A.T. Machado and I.M. Ferreira: Tuning of PID controllers based on Bode’s ideal transfer function. Nonlinear Dynamics, 38 (2004), 305-321. DOI: 10.1007/s11071-004-3763-7.
  • [31] X. Li, Y. Wang, N. Li, M. Han, Y. Tang and F. Liu: Optimal fractional order PID controller design for automatic voltage regulator system based on reference model using particle swarm optimization. International Journal of Machine Learning and Cybernetics, 8(5), (2017), 1595-1605. DOI: 10.1007/s13042-016-0530-2.
  • [32] M. Bettayeb, R. Mansouri and U. Al-Saggaf: Smith predictor based fractional order filter PID controllers design for long time delay systems. Asian Journal of Control, 19(2), (2016), 587-598. DOI: 10.1002/asjc.1385.
  • [33] C.A. Monje, B.M. Vinagre, V. Feliu, and Y. Chen: Tuning and auto-tuning of fractional order controllers for industry applications. Control Engineering Practice, 16(7), (2008), 798-812. DOI: 10.1016/j.conengprac.2007.08.006.
  • [34] H. Li, Y. Luo and Y. Chen: A fractional order proportional and derivative (FOPD) motion controller: Tuning rule and experiments. IEEE Transactions on Control Systems Technology, 18(2), (2010), 516-520. DOI: 10.1109/TCST.2009.2019120.
  • [35] S.K. Verma and R. Devarapalli: Fractional order PI𝜆D𝜇 controller with optimal parameters using modified grey Wolf optimizer for AVR system. Archives of Control Sciences, 32(2), (2022), 429-450. DOI: 10.24425/ACS.2022.141719.
  • [36] M. Tenoutit, N. Maamri and J. Trigeassou: An output feedback approach to the design of robust fractional PI and PID controllers. IFAC Proceedings Volumes, 44(1), (2011), 12568-12574. DOI: 10.3182/20110828-6-IT-1002.01217.
  • [37] A. Oustaloup: La Commande CRONE: Commande robuste d’ordre non entier. Hermès Science Publications, 1991 (in French).
  • [38] H. Wang, G.Q. Zeng, Y.X. Dai, D. Bi, J. Sun and X. Xie: Design of a fractional order frequency PID controller for an islanded microgrid: A multi-objective extremal optimization method. Energies, 10(10), (2017), 1502. DOI: 10.3390/en10101502.
  • [39] G.Q. Zeng, J. Chen, Y.X. Dai, L. M. Li, C.W. Zheng and M.R. Chen: Design of fractional order PID controller for automatic regulator voltage system based on multi-objective extremal optimization. Neurocomputing, 160 (2015), 173-184. DOI: 10.1016/j.neucom.2015.02.051.
  • [40] I. Podlubny: Fractional-order systems and PI𝜆D𝜇 controllers. IEEE Transactions on Automatic Control, 44(1), (1999), 208-214. DOI: 10.1109/9.739144.
  • [41] K. Bettou and A. Charef: Optimal tuning of fractional order PI𝜆D𝜇A controller using particle swarm optimization algorithm. IFAC PapersOnLine, 50(1), (2017), 8084-8089. DOI: 10.1016/J.IFACOL.2017.08.1241.
  • [42] K. Bettou and A. Charef: Optimal fractional order PI𝜆D𝜇A controller design for bioreactor control using particle swarm optimization. 6𝑡ℎ International Conference on Systems and Control, (2017). DOI: 10.1109/ICoSC.2017.7958652.
  • [43] K. Bettou and A. Charef: Tuning of fractional PI𝜆D𝜇A controllers by using PSO. International Journal of Control, Energies and Electrical Engineering (CEEE), 14 (2019), 30-34.
  • [44] C. Montree, N. Auttarat and P. Deacha: Optimal tuning of fractional order PI𝜆D𝜇A𝜈 controller by cuckoo search algorithm. 2𝑛𝑑 Artificial Intelligence and Cloud Computing Conference, (2019), 178-183. DOI: 10.1145/3375959.3375960.
  • [45] P. Deacha: A novel fractional order PI𝜆D𝜇A𝜈 controller and its design optimization based on spiritual search. International Review of Automatic Control, 12(6), (2019), DOI: 10.15866/ireaco.v12i6.17456.
  • [46] O. Necati, Y. Celaleddin, B.A. Baris, H. Norbert, K. Aslihan and S. Roman: 2DOF multi-objective optimal tuning of disturbance reject fractional order PIDA controllers according to improved consensus oriented random search method. Journal of Advanced Research, 25 (2020), 159-170. DOI: 10.1016/j.jare.2020.03.008.
  • [47] M. Ramasamy and S. Sundaramoorthy: PID controller tuning for desired closed-loop responses for SISO systems using impulse response. Computers and Chemical Engineering, 32 (2008), 1773-1788. DOI: 10.1016/j.compchemeng.2007.08.019.
  • [48] N. Fergani and A. Charef: Process step response based fractional PI𝜆D𝜇 controller parameters tuning for desired closed loop response. International Journal of Systems Science, (2014), 512-532. DOI: 10.1080/00207721.2014.891667.
  • [49] A. Charef: Modeling and analog realization of the fundamental linear fractional order differential equation. Nonlinear Dynamics, 46 (2006), 195-210. DOI: 10.1007/S11071-006-9023-2.
  • [50] K. Miller and B. Ross: An introduction to the fractional calculus and fractional differential equations, Wiley, New York; 1993.
  • [51] I. Petras, I. Podlubny, P. O’Leary, L. Dorcak and B.M. Vinagre: Analogue realization of fractional order controllers. Nonlinear Dynamics, 29(1-4), (2002), 281-296. DOI: 10.1023/A:1016556604320.
  • [52] A. Charef, M. Charef, A. Djouambi and A. Voda: New perspectives of analog and digital simulations of fractional order systems. Archives of Control Sciences, 27(1), (2017), 91-118. DOI: 10.1515/acsc-2017-0006.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-999094b2-74c3-49a8-9047-43960ee33f25
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.