PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Inset-FED microstrip patch antenna for glucose detection using label-free microwave sensing mechanism

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this work, a real-time label-free microwave sensing mechanism for glucose concentration monitoring using a planar biosensor configured with an inset fed microstrip patch antenna has been demonstrated. A microstrip patch antenna with the resonating frequency of 1.45 GHz has been designed and is fabricated on the Flame Retardant (FR-4) substrate. Due to the intense electromagnetic field at the edges of the patch antenna, edge length has been used as the detecting area where the sample under test (SUT) interacts with the electromagnetic field. The Poly-Dimethyl-Siloxane (PDMS) with the trench in the centre has been employed as the sample holder. Here, the SUT is the glucose dissolved in DI (de-ionized) water with the concentration range of 0.2 to 0.6 g/mL. The dielectric constant dependency on the glucose concentration has been used as the distinguishing factor which results in a shift in the S-parameter. The experimentally measured RF parameters were observed closely which showed the shift in S11 magnitude from -40 to -15 dB and resonant frequency from 1.27 to 1.3 GHz w.r.t the SUT solution of 0.2 to 0.6 g/mL with linear regression coefficient of 0.881, and 0.983 respectively.
Słowa kluczowe
Rocznik
Strony
211--222
Opis fizyczny
Bibliogr. 37 poz., for., rys., tab., wykr.
Twórcy
autor
  • Institute of Science and Technology, Chandrakona Town, Paschim Medinipur, West Bengal-721301, India
  • Microsystems Lab, School of Computer and Systems Sciences, Jawaharlal Nehru University, New Delhi-110067, India
Bibliografia
  • [1] Zhang, S., Wright, G., & Yang, Y. (2000). Materials and techniques for electrochemical biosensor design and construction. Biosensors and Bioelectronics, 15(5-6), 273-282. https://doi.org/10.1016/S0956-5663(00)00076-2
  • [2] Jafari, F., Khalid, K., Hassan, Y. J., Zulkifly, A., & Salim, N. S. M. (2015). Variation of microwave dielectric properties in the glucose biosensor system. International Journal of Food Properties, 18(7), 1428-1433. https://doi.org/10.1080/10942912.2011.619293
  • [3] Bababjanyan, A., Melikyan, H., Kim, S., Kim, J., Lee, K., & Friedman, B. (2010). Real-time noninvasive measurement of glucose concentration using a microwave biosensor. Journal of Sensors, 2010. https://doi.org/10.1155/2010/452163
  • [4] Liu, X., Hu, Q., Wu, Q., Zhang, W., Fang, Z., & Xie, Q. (2009). Aligned ZnO nanorods: a useful film to fabricate amperometric glucose biosensor. Colloids and Surfaces B: Biointerfaces, 74(1), 154-158. https://doi.org/10.1016/j.colsurfb.2009.07.011
  • [5] Liao, C. W., Chou, J. C., Sun, T. P., Hsiung, S. K., & Hsieh, J. H. (2007). Preliminary investigations on a glucose biosensor based on the potentiometric principle. Sensors and Actuators B: Chemical, 123(2), 720-726. https://doi.org/10.1016/j.snb.2006.10.006
  • [6] Heller, A. (1999). Implanted electrochemical glucose sensors for the management of diabetes. Annual Review of Biomedical Engineering, 1(1), 153-175. https://doi.org/10.1146/annurev.bioeng.1.1.153
  • [7] Choudhury, B., Shinar, R., & Shinar, J. (2004). Glucose biosensors based on organic light-emitting devices structurally integrated with a luminescent sensing element. Journal of Applied Physics, 96(5), 2949-2954. https://doi.org/10.1063/1.1778477
  • [8] Jerónimo, P. C., Araújo, A. N., & Montenegro, M. C. B. (2007). Optical sensors and biosensors based on sol-gel films. Talanta, 72(1), 13-27. https://doi.org/10.1016/j.talanta.2006.09.029
  • [9] Subramanian, A., Oden, P. I., Kennel, S. J., Jacobson, K. B., Warmack, R. J., Thundat, T., & Doktycz, M. J. (2002). Glucose biosensing using an enzyme-coated microcantilever. Applied Physics Letters, 81(2), 385-387. https://doi.org/10.1063/1.1492308
  • [10] Hertzberg, O., Bauer, A., Küderle, A., Pleitez, M. A., & Mäntele, W. (2017). Depth-selective photothermal IR spectroscopy of skin: potential application for non-invasive glucose measurement. Analyst, 142(3), 495-502. https://doi.org/10.1039/C6AN02278B
  • [11] del Barrio, M., Moros, M., Puertas, S., de la Fuente, J. M., Grazú, V., Cebolla, V., ... & Galbán, J. (2017). Glucose oxidase immobilized on magnetic nanoparticles: Nanobiosensors for fluorescent glucose monitoring. Microchimica Acta, 184(5), 1325-1333. https://doi.org/10.1007/s00604-017-2120-8
  • [12] Pandey, R., Paidi, S. K., Valdez, T. A., Zhang, C., Spegazzini, N., Dasari, R. R., & Barman, I. (2017). Noninvasive monitoring of blood glucose with Raman spectroscopy. Accounts of Chemical Research, 50(2), 264-272. https://doi.org/10.1021/acs.accounts.6b00472
  • [13] Zhang, T., Zhang, C., Zhao, H., Zeng, J., Zhang, J., Zhou, W., ... & Chen, W. (2016). Determination of serum glucose by isotope dilution liquid chromatography-tandem mass spectrometry: a candidate reference measurement procedure. Analytical and Bioanalytical Chemistry, 408(26), 7403-7411. https://doi.org/10.1007/s00216-016-9817-0
  • [14] Phan, Q. H., & Lo, Y. L. (2017). Stokes-Mueller matrix polarimetry system for glucose sensing. Optics and Lasers in Engineering, 92, 120-128. https://doi.org/10.1016/j.optlaseng.2016.08.017
  • [15] Valiuniene, A., Rekertaite, A. I., Ramanavičiene, A., Mikoliunaite, L., & Ramanavičius, A. (2017). Fast Fourier transformation electrochemical impedance spectroscopy for the investigation of inactivation of glucose biosensor based on graphite electrode modified by Prussian blue, polypyrrole and glucose oxidase. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 532, 165-171. https://doi.org/10.1016/j.colsurfa.2017.05.048
  • [16] Vélez, P., Su, L., Grenier, K., Mata-Contreras, J., Dubuc, D., & Martín, F. (2017). Microwave microfluidic sensor based on a microstrip splitter/combiner configuration and split ring resonators (SRRs) for dielectric characterization of liquids. IEEE Sensors Journal, 17(20), 6589-6598. https://doi.org/10.1109/JSEN.2017.2747764
  • [17] Ebrahimi, A., Withayachumnankul, W., Al-Sarawi, S., & Abbott, D. (2013). High-sensitivity metamaterial-inspired sensor for microfluidic dielectric characterization. IEEE Sensors Journal, 14(5), 1345-1351. https://doi.org/10.1109/JSEN.2013.2295312
  • [18] Ebrahimi, A., Scott, J., & Ghorbani, K. (2019). Ultrahigh-sensitivity microwave sensor for microfluidic complex permittivity measurement. IEEE Transactions on Microwave Theory and Techniques, 67(10), 4269-4277. https://doi.org/10.1109/TMTT.2019.2932737
  • [19] Abdolrazzaghi, M., Daneshmand, M., & Iyer, A. K. (2018). Strongly enhanced sensitivity in planar microwave sensors based on metamaterial coupling. IEEE Transactions on Microwave Theory and Techniques, 66(4), 1843-1855. https://doi.org/10.1109/TMTT.2018.2791942
  • [20] Ebrahimi, A., Scott, J., & Ghorbani, K. (2020). Microwave reflective biosensor for glucose level detection in aqueous solutions. Sensors and Actuators A: Physical, 301, 111662. https://doi.org/10.1016/j.sna.2019.111662
  • [21] Ebrahimi, A., Withayachumnankul, W., Al-Sarawi, S. F., & Abbott, D. (2015, November). Microwave microfluidic sensor for determination of glucose concentration in water. In 2015 IEEE 15th Mediterranean Microwave Symposium (MMS) (pp. 1-3). IEEE. https://doi.org/10.1109/MMS.2015.7375441
  • [22] Grenier, K., Dubuc, D., Poleni, P. E., Kumemura, M., Toshiyoshi, H., Fujii, T., & Fujita, H. (2009). Integrated broadband microwave and microfluidic sensor dedicated to bioengineering. IEEE Transactions on microwave theory and techniques, 57(12), 3246-3253. https://doi.org/10.1109/TMTT.2009.2034226
  • [23] Kim, N. Y., Dhakal, R., Adhikari, K. K., Kim, E. S., & Wang, C. (2015). A reusable robust radio frequency biosensor using microwave resonator by integrated passive device technology for quantitative detection of glucose level. Biosensors and Bioelectronics, 67, 687-693. https://doi.org/10.1016/j.bios.2014.10.021
  • [24] Kim, N. Y., Adhikari, K. K., Dhakal, R., Chuluunbaatar, Z., Wang, C., & Kim, E. S. (2015). Rapid, sensitive and reusable detection of glucose by a robust radiofrequency integrated passive device biosensor chip. Scientific Reports, 5(1), 1-9. https://doi.org/10.1038/srep07807
  • [25] Gennarelli, G., Romeo, S., Scarfì, M. R., & Soldovieri, F. (2013). A microwave resonant sensor for concentration measurements of liquid solutions. IEEE Sensors Journal, 13(5), 1857-1864. https://doi.org/10.1109/JSEN.2013.2244035
  • [26] Zidane, M. A., Rouane, A., Hamouda, C., & Amar, H. (2021). Hyper-sensitive microwave sensor based on split ring resonator (SRR) for glucose measurement in water. Sensors and Actuators A: Physical, 321, 112601. https://doi.org/10.1016/j.sna.2021.112601
  • [27] Shahri, A. A., Omidvar, A. H., Rehder, G. P., & Serrano, A. L. (2021). A high sensitivity microwave glucose sensor. Measurement Science and Technology, 32(7). https://doi.org/10.1088/1361-6501/abe1e3
  • [28] Sameer, M., & Agarwal, P. (2019). Coplanar waveguide microwave sensor for label-free real-time glucose detection. Radioengineering, 28(2), 491. https://doi.org/10.13164/re.2019.0491
  • [29] Abedeen, Z., & Agarwal, P. (2018). Microwave sensing technique based label-free and real-time planar glucose analyzer fabricated on FR4. Sensors and Actuators A: Physical, 279, 132-139. https://doi.org/10.1016/j.sna.2018.06.011
  • [30] Todi, S., & Agarwal, P. (2022). Mediator-Free and Rapid Glucose Sensing Using 5-Turn Meandered Signal Coplanar Sensor (MSCS) with Rectangular PDMS Cavity for the Sensitivity Enhancement. IETE Technical Review, 1-11. https://doi.org/10.1080/02564602.2022.2067082
  • [31] Khadase, R., & Nandgaonkar, A. (2016, December). Design of Implantable MSA for Glucose Monitoring. In International Conference on Communication and Signal Processing 2016 (ICCASP 2016) (pp. 625-629). Atlantis Press. https://doi.org/10.2991/iccasp-16.2017.90
  • [32] Vrba, J., Karch, J., & Vrba, D. (2015). Phantoms for development of microwave sensors for non-invasive blood glucose monitoring. International Journal of Antennas and Propagation, 2015. https://doi.org/10.1155/2015/570870
  • [33] Rahman, M. N., Islam, M. T., & Samsuzzaman Sobuz, M. (2018). Salinity and sugar detection system using microstrip patch antenna. Microwave and Optical Technology Letters, 60(5), 1092-1096. https://doi.org/10.1002/mop.31108
  • [34] Malmberg, C. G., & Maryott, A. A. (1950). Dielectric constants of aqueous solutions of dextrose and sucrose. Journal of Research of the National Bureau of Standards, 45(4), 299-303. https://doi.org/10.6028/JRES.045.030
  • [35] Balanis, C. A. (2015). Antenna Theory: Analysis and Design. John Wiley & Sons.
  • [36] Ramesh, M., & Kb, Y. I. P. (2003). Design formula for inset fed microstrip patch antenna. Journal of Microwaves, Optoelectronics and Electromagnetic Applications (JMOe), 3(3), 5-10.
  • [37] Prabhakar, D., Rao, P. M., & Satyanarayana, D. M. (2016). Characteristics of Patch Antenna with Notch gap variation for Wi-Fi Application. International Journal of Applied Engineering Research, 11(8), 5741-5746.
Uwagi
1. We would like to thank the UGC-UPE II by the University Grant Commission, DST-INSPIRE (Innovation in Science Pursuit for Inspired Research) Faculty Award Research Grant DST-PURSE (Promotion of University Research and Scientific Excellence) by Department of Science & Technology (DST), Government of India for the financial support to carry out this research work. We would like to thank Dr. Shatendra Sharma and Mr. Amrish K. Gajjar, University Science Instrumentation Centre (USIC), JNU for workshop support. We would like to thank Mr. Amit Sharma, Ms. Swati Todi and Mohammad Ahmad Ansari for their technical support. The authors would also like to thank Prof. Souti Goswami, Electronics and Communication Department, Institute of Science & Technology college.
2. Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-998defe0-f289-4e9a-b22f-8203a8f65e8e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.