PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Mobility of potentially toxic elements from the abandoned uranium mine’s spoil bank

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This study is part of the ongoing environmental monitoring program of the abandoned Mecsek uranium mine during the remediation period. During this program on the recultivated No.1 spoil bank, the radioactivity and the potentially toxic element (PTE) contents in the covering soil had shown some anomalies which refers to possible migration alongside the slope. Therefore, in a previous study, soil and plant samples were collected from top to bottom position of the slope and the total element content was determined by multi-elemental inductively coupled plasma-optical emission spectrometry. The results have indicated that there was a high possibility for PTEs to be mobile and available for uptake by plants. To confirm this indication in the present study for the soil samples the BCR sequential extraction procedure was applied to characterise the environmental mobility of PTEs, and it was compared with soil pH and cation exchange capacity (CEC). The results indicated that the ratio of Cd, Co, Mn, Pb, and U in the non-residual fractions ranged between 36.8 to 100 % and increased from top to bottom direction. The comparison showed that the samples with the lowest pH and CEC had the most mobility of the PTEs. The distribution of U, Cd, Mn, Co, and Pb in fractions indicated that some parts of the spoil deposit require additional steps to hinder the migration through the covering soil layer, and the BCR sequential extraction procedure has proven to be useful in providing information for the planning and management of remediation operations.
Rocznik
Strony
241--258
Opis fizyczny
Bibliogr. 71 poz., il., tab., wykr.
Twórcy
  • Department of Environmental Analysis and Technologies, Institute of Environmental Sciences, Hungarian University of Agriculture and Life Sciences, Páter Károly u. 1, 2100 Gödöllő, Hungary
  • Department of Environmental Analysis and Technologies, Institute of Environmental Sciences, Hungarian University of Agriculture and Life Sciences, Páter Károly u. 1, 2100 Gödöllő, Hungary
  • Bányavagyon-hasznosító Nonprofit Közhasznú Kft (Mining Property Utilization Ltd.), Tarsay Vilmos u. 3. l. em., 1126 Budapest, Hungary
  • Department of Environmental Analysis and Technologies, Institute of Environmental Sciences, Hungarian University of Agriculture and Life Sciences, Páter Károly u. 1, 2100 Gödöllő, Hungary
Bibliografia
  • [1] Carvalho FP, Oliveira JM, Malta M, Lemos ME. Radioanalytical assessment of environmental contamination around non-remediated uranium mining legacy site and radium mobility. J Radioanal Nucl Chem. 2014;299:119-25. DOI: 10.1007/s10967-013-2734-1.
  • [2] Fernández-Ondoño E, Bacchetta G, Lallena AM, Navarro FB, Ortiz I, Jiménez MN. Use of BCR sequential extraction procedures for soils and plant metal transfer predictions in contaminated mine tailings in Sardinia. J Geochemical Explor. 2017;172:133-41. DOI: 10.1016/j.gexplo.2016.09.013.
  • [3] Kabata-Pendias A. Soil-plant transfer of trace elements - An environmental issue. Geoderma. 2004;122:143-9. DOI: 10.1016/j.geoderma.2004.01.004.
  • [4] Valencia-Avellan M, Slack R, Stockdale A, Mortimer RJG. Effect of episodic rainfall on aqueous metal mobility from historical mine sites. Environ Chem. 2017;14:469-75. DOI: 10.1071/EN17133.
  • [5] Smičiklas I, Šljivić-Ivanović M. Radioactive Contamination of the Soil: Assessments of Pollutants Mobility with Implication to Remediation Strategies. In: Larramendy ML, Soloneski S, editors. Soil Contamination - Current Consequences and Further Solutions. Rijeka, Croatia: InTech; 2016. DOI: 10.5772/62589.
  • [6] Greger M. Uptake of Nuclides by Plants. Stockholm, Sweden: 2004. Available from: https://inis.iaea.org/collection/NCLCollectionStore/_Public/35/080/35080548.pdf.
  • [7] Dowdall M, Standring W, Shaw G, Strand P. Will global warming affect soil-to-plant transfer of radionuclides? J Environ Radioact. 2008;99:1736-45. DOI: 10.1016/j.jenvrad.2008.06.012.
  • [8] Ogundiran MB, Osibanjo O. Mobility and speciation of heavy metals in soils impacted by hazardous waste. Chem Speciat Bioavailab. 2009;21:59-69. DOI: 10.3184/095422909X449481.
  • [9] Shiva Kumar D, Srikantaswamy S. Factors affecting on mobility of heavy metals in soil environment. Int J Sci Res Dev. 2014;2:201-3. Available from: http://www.ijsrd.com/articles/IJSRDV2I3073.pdf.
  • [10] Rodgers KJ, Hursthouse A, Cuthbert S. The potential of sequential extraction in the characterisation and management of wastes from steel processing: A prospective review. Int J Environ Res Public Health. 2015;12:11724-55. DOI: 10.3390/ijerph120911724.
  • [11] Hooda PS. Trace Elements in Soils. 1st ed. Chichester, West Sussex, United Kingdom: John Wiley Sons, Ltd; 2010. DOI: 10.13140/RG.2.1.3377.1123.
  • [12] Qasim B, Motelica-Heino M. Potentially toxic element fractionation in technosoils using two sequential extraction schemes. Environ Sci Pollut Res. 2014;21:5054-65. DOI: 10.1007/s11356-013-2457-4.
  • [13] Rauret G, López-Sánchez JF, Sahuquillo A, Rubio R, Davidson C, Ure A, et al. Improvement of the BCR three step sequential extraction procedure prior to the certification of new sediment and soil reference materials. J Environ Monit. 1999;1:57-61. DOI: 10.1039/a807854h.
  • [14] Pavlović D, Pavlović M, Čakmak D, Kostić O, Jarić S, Sakan S, et al. Fractionation, mobility, and contamination assessment of potentially toxic metals in urban soils in four industrial Serbian cities. Arch Environ Contam Toxicol. 2018;75:335-50. DOI: 10.1007/s00244-018-0518-x.
  • [15] Zhu X, Yang F, Wei C. Factors influencing the heavy metal bioaccessibility in soils were site dependent from different geographical locations. Environ Sci Pollut Res. 2015;22:13939-49. DOI: 10.1007/s11356-015-4617-1.
  • [16] Rauret G, López-Sánchez JF, Sahuquillo A, Rubio R, Davidson C, Ure A, et al. The certification of the extractable contents (mass fractions) of Cd, Cr, Cu, Ni. Pb and Zn in freshwater sediment following a sequential extraction procedure - BCR-701. Belgium: 2001. Available from: https://op.europa.eu/en/publication-detail/-/publication/02c41803-8f6d-41f2-a73d-c47225ff8c6e [accessed March 14, 2020].
  • [17] Filgueiras AV, Lavilla I, Bendicho C. Evaluation of distribution, mobility and binding behaviour of heavy metals in surficial sediments of Louro River (Galicia, Spain) using chemometric analysis: A case study. Sci Total Environ. 2004;330:115-29. DOI: 10.1016/j.scitotenv.2004.03.038.
  • [18] Heltai G, Győri Z, Fekete I, Halász G, Kovács K, Takács A, et al. Application of flexible multi-elemental ICP-OES detection in fractionation of potentially toxic element content of solid environmental samples by a sequential extraction procedure. Microchem J. 2019;149:104029. DOI: 10.1016/j.microc.2019.104029.
  • [19] Heltai G, Győri Z, Fekete I, Halász G, Kovács K, Takács A, et al. Longterm study of transformation of potentially toxic element pollution in soil/water/sediment system by means of fractionation with sequential extraction procedures. Microchem J. 2018;136:85-93. DOI: 10.1016/j.microc.2017.01.026.
  • [20] Cuvier A, Pourcelot L, Probst A, Prunier J, Le Roux G. Trace elements and Pb isotopes in soils and sediments impacted by uranium mining. Sci Total Environ. 2016;566-567:238-49. DOI: 10.1016/j.scitotenv.2016.04.213.
  • [21] Salbu B, Krekling T, Oughton DH. Characterisation of radioactive particles in the environment. Analyst. 1998;123:843-9. DOI: 10.1039/a800314i.
  • [22] Kabala C, Singh BR. Fractionation and mobility of copper, lead, and zinc in soil profiles in the vicinity of a copper smelter. J Environ Qual. 2001;30:485-92. DOI: 10.2134/jeq2001.302485x.
  • [23] Topcuoğlu B. Heavy metal mobility and bioavailability on soil pollution and environmental risks in greenhouse areas. Int J Adv Agric Environ Eng. 2016;3:208-13. DOI: 10.15242/IJAAEE.ER0416020.
  • [24] Mecsekérc Zrt. Uranium Monitoring 2017. Available from: https://www.mecsekerc.hu/eng-uraniparimonitoring [accessed May 10, 2020].
  • [25] IAEA. Treatment of liquid effluent from uranium mines and mills - Report of a co-ordinated research project 1996-2000. Austria: 2004. Available from: https://wwwpub. iaea.org/MTCD/Publications/PDF/te_1419_web.pdf.
  • [26] Khumalo LHN, Heltai G, Horváth M. Mobility of radionuclides from the spoil deposit No.1 of the abandoned uranium mine in Pécs, Hungary. In: Světlík I, Povinec PP, Pachnerová Brabcová K, editors. 5Th Int Conf Environ Radioactivity ENVIRA 2019: Variations of Environmental Radioniclides, Prague: Czech Technical University in Prague; 2019. DOI: 10.14311/ENVIRA.2019.
  • [27] Khumalo L, Heltai G, Horváth M. The migration of potentially toxic elements during the recultivation of the uranium mining deposit in Mecsek. Acta Hydrol Slovaca. 2020;20:210-7. DOI: 10.31577/ahs-2019-0020.02.0026.
  • [28] Kubová J, Matúš P, Bujdoš M, Hagarová I, Medved’ J. Utilization of optimized BCR three-step sequential and dilute HCl single extraction procedures for soil-plant metal transfer predictions in contaminated lands. Talanta. 2008;75:1110-22. DOI: 10.1016/j.talanta.2008.01.002.
  • [29] Obrador A, Alvarez JM, Lopez-Valdivia LM, Gonzalez D, Novillo J, Rico MI. Relationships of soil properties with Mn and Zn distribution in acidic soils and their uptake by a barley crop. Geoderma. 2007;137:432-43. DOI: 10.1016/j.geoderma.2006.10.001.
  • [30] Bacon JR, Davidson CM. Is there a future for sequential chemical extraction? Analyst. 2008;133:25-46. DOI: 10.1039/b711896a.
  • [31] Juhasz L, Erdi-Krausz G. Consequences of the Hungarian Uranium Mining and Milling. In: Int Atomic Energy Agency. Proc Workshop held within the Technical Co-operation Project on Environmental Restoration in Central and Eastern Europe in Budapest, Hungary, 4-8 October 1993: Planning for environmental restoration of radioactiviely contaminated sites in cent. Vienna, Austria: International Atomic Energy Agency; 1993. DOI: 10.1007/978-3-662-02783-7_10.
  • [32] Hungarian Atomic Energy Authority. National Report Sixth Report prepared within the framework of the Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management. Budapest: 2017. Available from: https://www.oah.hu/web/v3/haeaportal.nsf/987F704701527382C1258240004C7081/$FILE/JC%206th%20National%20Report%20Hungary.pdf.
  • [33] Hungarian Central Statistical Office. Meteorological data (1985-). Summ Tables - Time Ser Annu Data - Environ. Available from: https://www.ksh.hu/docs/eng/xstadat/xstadat_annual/i_met002cc.html [accessed April 7, 2021].
  • [34] Hungarian Central Statistical Office. Meteorological Data. Summ Tables - Time Ser Annu Data – Environ 15228 Meteorol Data Pécs*. Available from: https://www.ksh.hu/stadat_files/kor/en/kor0077.html [accessed March 30, 2021].
  • [35] OrangeSmile.com. Maps of Hungary. Orange Smile. Available from: https://orangesmile.com/travelguide/hungary/country-maps.htm [accessed April 3, 2021].
  • [36] MSZ 1484-3:2006. Testing of waters. Part 3: Determination of dissolved, suspended and total metals in water by AAS and ICP-OES. Hungarian Stand Board. 2006. Available from: http://www.mszt.hu/web/guest/home [accessed November 1, 2020].
  • [37] Tessier A, Campbell PGC, Bisson M. Sequential extraction procedure for the speciation of particulate trace metals. Anal Chem. 1979;51:844-51. DOI: 10.1021/ac50043a017.
  • [38] Sungur A, Soylak M, Ozcan H. Investigation of heavy metal mobility and availability by the BCR sequential extraction procedure: Relationship between soil properties and heavy metals availability. Chem Speciat Bioavailab. 2014;26:219-30. DOI: 10.3184/095422914X14147781158674.
  • [39] Baran A, Tarnawski M. Assessment of heavy metals mobility and toxicity in contaminated sediments by sequential extraction and a battery of bioassays. Ecotoxicology. 2015;24:1279-93. DOI: 10.1007/s10646-015-1499-4.
  • [40] In: Hasegawa H, Rahman IMM, Rahman MA, editors. Environmental Remediation Technologies for Metal-Contaminated Soils. Tokyo: Springer; 2016: 254 pp. ISBN: 9784431557593. DOI: 10.1007/978-4-431-55759-3.
  • [41] Sheppard SC, Evenden WG. Bioavailability indices for uranium: Effect of concentration in eleven soils. Arch Environ Contam Toxicol. 1992;23:117-24. DOI: 10.1007/BF00226004.
  • [42] Vandenhove H, Van Hees M, Wouters K, Wannijn J. Can we predict uranium bioavailability based on soil parameters? Part 1: Effect of soil parameters on soil solution uranium concentration. Environ Pollut. 2007;145:587-95. DOI: 10.1016/j.envpol.2006.04.011.
  • [43] Neiva AMR, Carvalho PCS, Antunes IMHR, Silva MMVG, Santos ACT, Cabral Pinto MMS, et al. Contaminated water, stream sediments and soils close to the abandoned Pinhal do Souto uranium mine, central Portugal. J Geochemical Explor. 2014;136:102-17. DOI: 10.1016/j.gexplo.2013.10.014.
  • [44] Pueyo M, Mateu J, Rigol A, Vidal M, Lo JF. Use of the modified BCR three-step sequential extraction procedure for the study of trace element dynamics in contaminated soils. Environ Pollut. 2008;152:330-41. DOI: 10.1016/j.envpol.2007.06.020.
  • [45] Alshahri F. Uranium and trace metals contamination in topsoil from different zones around industrial city, Al Jubail, Saudi Arabia. Arch Environ Contam Toxicol. 2019;77:308-19. DOI: 10.1007/s00244-019-00642-9.
  • [46] Skipperud L, Salbu B. Sequential extraction as a tool for mobility studies of radionuclides and metals in soils and sediments. Radiochim Acta. 2015;103:187-97. DOI: 10.1515/ract-2014-2342.
  • [47] Russell P, Tharmanathan T. Lead and zinc. Wat on Earth. University of Waterloo. Lead Zinc. 2003:November 24. Available from: https://uwaterloo.ca/wat-on-earth/news/lead-and-zinc [accessed April 14, 2021].
  • [48] Statstutor. Pearson’s Correlation 2015. Available from: https://www.statstutor.ac.uk/resources/uploaded/pearsons.pdf.
  • [49] Althouse AD, Soman P. Understanding the true significance of a P value. J Nucl Cardiol. 2017;24:191-4. DOI: 10.1007/s12350-016-0605-1.
  • [50] Gavrilescu M, Pavel LV, Cretescu I. Characterization and remediation of soils contaminated with uranium. J Hazard Mater. 2009;163:475-510. DOI: 10.1016/j.jhazmat.2008.07.103.
  • [51] Zimmerman AJ, Weindorf DC. Heavy metal and trace metal analysis in soil by sequential extraction: A review of procedures. Int J Anal Chem. 2010;2010:1-7. DOI: 10.1155/2010/387803.
  • [52] Okoro HK, Ige JO, Iyiola OA, Ngila JC. Fractionation profile, mobility patterns and correlations of heavy metals in estuary sediments from olonkoro river, in tede catchment of western region, Nigeria. Environ Nanotechnology, Monit Manage. 2017;8. DOI: 10.1016/j.enmm.2017.04.003.
  • [53] Pradhanang S. Distribution and fractionation of heavy metals in sediments of Karra River, Hetauda, Nepal. J Inst Sci Technol. 2015;19:123-8. DOI: 10.3126/jist.v19i2.13865.
  • [54] Pérez-Moreno SM, Gázquez MJ, Pérez-López R, Bolivar JP. Validation of the BCR sequential extraction procedure for natural radionuclides. Chemosphere. 2018;198:397-408. DOI: 10.1016/j.chemosphere.2018.01.108.
  • [55] Soltani N, Keshavarzi B, Moore F, Sorooshian A, Ahmadi MR, Sciences A, et al. Distribution of potentially toxic elements (PTEs) in tailings, soils, and plants around Gol-E-Gohar iron mine, a case study in Iran. Env Sci Pollut Res Int. 2017;24:18798-816. DOI: 10.1007/s11356-017-9342-5.
  • [56] Barman M, Datta SP, Rattan RK, Meena MC. Chemical fractions and bioavailability of nickel in alluvial soils. Plant, Soil Environ. 2015;61:17-22. DOI: 10.17221/613/2014-PSE.
  • [57] Davidson CM, Urquhart GJ, Ajmone-Marsan F, Biasioli M, da Costa Duarte A, Díaz-Barrientos E, et al. Fractionation of potentially toxic elements in urban soils from five European cities by means of a harmonised sequential extraction procedure. Anal Chim Acta. 2006;565:63-72. DOI: 10.1016/j.aca.2006.02.014.
  • [58] Korychenskyi KO, Laptev GV, Voitsekhovych OV, Lavrova TV, Dyvak TI. Speciation and mobility of uranium in tailings materials at the U-production legacy site in Ukraine. Nucl Phys Atomic Energy. 2018;19(3):270-9. DOI: 10.15407/jnpae2018.03.270
  • [59] Garnier-Laplace J, Colle C, Morello M. Radionuclide fact sheet: Natural uranium and the environment. 2001. Available from: https://www.irsn.fr/EN/Research/publications-documentation/radionuclidessheets/environment/Documents/Uranium_UK.pdf.
  • [60] Závodská L, Kosorínová E, Scerbakova L, Lesny J. Environmental chemistry of uranium. HUISSN 1418-7108 HEJ Manuscr No ENV-081221-A. 2008;17:1-18. Available from: http://heja.szif.hu/ENV/ENV-081221-A/env081221a.pdf.
  • [61] Wang L, Yu R, Hu G, Tu X. Speciation and assessment of heavy metals in surface sediments of Jinjiang River tidal reach, southeast of China. Environ Monit Assess. 2010;165:491-9. DOI: 10.1007/s10661-009-0961-2.
  • [62] Kotoky P, Bora BJ, Baruah NK, Baruah J, Baruah P, Borah GC. Chemical fractionation of heavy metals in soils around oil installations. Assam. Chem Speciat Bioavailab. 2003;15:115-26. DOI: 10.3184/095422903782775181.
  • [63] Zhang W, Wang X, Liu B. An ex-situ immobilization experiment with Zn, Pb, and Cu in dredged marine sediments from Bohai Bay, China. J Mar Sci Eng. 2019;7. DOI: 10.3390/jmse7110394.
  • [64] Ye H, Zang S, Xiao H, Zhang L. Speciation and ecological risk of heavy metals and metalloid in the sediments of Zhalong Wetland in China. Int J Environ Sci Technol. 2015;12:115-24. DOI: 10.1007/s13762-013-0399-5.
  • [65] Fedotov PS, Dzhenloda RK, Dampilova B V., Doroshkevich SG, Karandashev VK. Unexpected behavior of Zn, Cd, Cu, and Pb in soils contaminated by ore processing after 70 years of burial. Environ Chem Lett. 2018;16:637-45. DOI: 10.1007/s10311-018-0710-2.
  • [66] Barać N, Škrivanj S, Bukumirić Z, Živojinović D, Manojlović D, Barać M, et al. Distribution and mobility of heavy elements in floodplain agricultural soils along the Ibar River (Southern Serbia and Northern Kosovo). Chemometric investigation of pollutant sources and ecological risk assessment. Environ Sci Pollut Res. 2016;23:9000-11. DOI: 10.1007/s11356-016-6142-2.
  • [67] Van Herreweghe S, Swennen R, Vandecasteele C, Cappuyns V. Solid phase speciation of arsenic by sequential extraction in standard reference materials and industrially contaminated soil samples. Environ Pollut. 2003;122:323-42. DOI: 10.1016/S0269-7491(02)00332-9.
  • [68] Bielicka-Giełdoń A, Ryłko E, Zamojć K. Distribution, bioavailability and fractionation of metallic elements in Allotment garden soils using the BCR sequential extraction procedure. Polish J Environ Stud. 2013;22:1013-21. Available from: http://www.pjoes.com/Distribution-Bioavailability-and-Fractionation-rnof-Metallic-Elements-in-Allotment,89057,0,2.html.
  • [69] Sahito OM, Afridi HI, Kazi TG, Baig JA. Evaluation of heavy metal bioavailability in soil amended with poultry manure using single and BCR sequential extractions. Int J Environ Anal Chem. 2015;95:1066-79. DOI: 10.1080/03067319.2015.1078800.
  • [70] Sungur A, Soylak M, Yilmaz S, Özcan H. Determination of heavy metals in sediments of the Ergene River by BCR sequential extraction method. Environ Earth Sci. 2014;72:3293-305. DOI: 10.1007/s12665-014-3233-6.
  • [71] Ma H, Hua L, Ji J. Speciation and phytoavailability of heavy metals in sediments in Nanjing section of Changjiang River. Environ Earth Sci. 2011;64:185-92. DOI: 10.1007/s12665-010-0837-3.
Uwagi
1. Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
2. This research [paper] is supported by Stipendium Hungaricum [Reg. No.: 238700], by the South African Department of Higher Education and Training and by the Higher Education Institutional Excellence Program [NKFIH-1159-6/2019] awarded by the Ministry for Innovation and Technology within the framework of water-related research of Szent István University. This research was also supported by the Ministry of Innovation and Technology within the framework of the Thematic Excellence Program 2020, Institutional Excellence Sub-Program (TKP2020-IKA-12) in the topic of water-related researches of the Hungarian University of Agriculture and Life Sciences.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9984a077-dfc2-40ee-9a30-ea8a1e4400fc
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.