PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of temperature on the properties of nickel sulfide films performed by spray pyrolysis technique

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this work, we have prepared new materials of the nickel sulfide thin films by using the spray pyrolysis technique for promising co-catalyst to improve the photocatalytic performance or superconductivity. The effect of deposition temperature (523, 573 and 623 K) on structural, optical and electrical properties was investigated. The XRD diffraction shows that the prepared nickel sulfide at 523, 573 and 623 K having an orthorhombic, hexagonal and hexagonal structure, which were Ni3S2, Ni17S18 and NiS2, respectively. The minimum value of crystallite size (45,9 nm) was measured of deposited film at 573K. The thin films prepared at 523 and 573 K have an average transmittance is about 20 %. The prepared Ni1S2 thin film at T=623 K has the lowest calculated optical band gap and Urbach energy. The Ni1S2 thin film also has the best calculated of the refractive index and the extinction coefficient. The FTIR spectrums of the nickel sulfide have various bands such as Ni-S, C-H, O-H, N–H and C-S. The maximum electrical conductivity is 4,29x105 (Ω.cm)-1 was obtained at 573K of the Ni17S18. The nickel sulfide thin films sprayed at 573K have good structural, optical and electrical properties.
Rocznik
Strony
36--51
Opis fizyczny
Bibliogr. 46 poz., rys., tab.
Twórcy
autor
  • Material Sciences Department, Faculty of Science, University of Biskra, Biskra 07000, Algeria
  • Biological department, University of El-Oued, El-Oued 39000, Algeria
  • Material Sciences Department, Faculty of Science, University of Biskra, Biskra 07000, Algeria
autor
  • Material Sciences Department, Faculty of Science, University of Biskra, Biskra 07000, Algeria
autor
  • Unité de Physique des Dispositifs à Semiconduteurs, Faculté des Sciences de Tunis, Tunis El Manar University, Tunisia
autor
  • Department of Process Engineering, Faculty of Technology. Ferhat Abbas University Setif 1, 19000, Algeria
Bibliografia
  • 1. Kumar V., Sharma D.K., Sharma K., Dwivedi D.K., Investigation on physical properties of polycrystalline nickel sulphide films grown by simple & economical screen-printing method, Optik 156 (2018) 43–48.
  • 2. Kershaw S.V., Susha A.S., Rogach A.L., Narrow bandgap colloidal metal chalcogenide quantum dots: synthetic methods, heterostructures, assemblies, electronic and infrared optical properties, Chem. Soc. Rev. 42 (2013) 3033–3087.
  • 3. Chand P., R. Ghosh, Sukriti, Investigation of structural, morphological and optical properties of Zn doped CdS nanostructures synthesized via co-precipitation method, Optik 161 (2018) 44–53.
  • 4. He J., Mei Y., Zheng W.C., United calculation of the optical and EPR spectral data for Co2+-doped CdS crystal, Optik 194 (2019) 163087.
  • 5. Behboudnia M., Majlesara M.H., Khanbabaee B., Preparation of ZnS nanorods by ultrasonic waves, Mater. Sci. Eng. B 122 (2005) 160–163.
  • 6. Kristl M., Gyergyek S., Kristl J., Synthesis and characterization of nanosized silver chalcogenides under ultrasonic irradiation, Mater. Express 5 (2015) 359–366.
  • 7. Erken O., Gunes M., Kirmizigul F., Gumus C., Investigation of properties the copper sulfide thin films prepared from different copper salts, Optik 168 (2018) 884–891.
  • 8. Xu H., Wang W., Zhu W., Sonochemical synthesis of crystalline CuS nanoplates via an in situ template route, Mater. lett. 60 (2006) 2203–2206
  • 9. Kristl M., Hojnik N., Gyergyek S., M. Drofenik, Sonochemical preparation of copper sulfides with different phases in aqueous solutions, Mater. Res. Bull. 48 (2013) 1184–1188.
  • 10. Majid S., Ahmad K.S., Analysis of dopant concentration effect on optical and morphological properties of PVD coated Cu-doped Ni3S2 thin films, Optik 187 (2019) 152–163.
  • 11. Yin P.F., Sun L.L., Zhou C., Sun Y.H., Han X.Y., Deng C.R., Characterization and magnetic property of 3D flower-like nickel sulphide nanocrystals through decomposing bis(thiourea) nickel(II) chloride crystals, Bull. Mater. Sci. 38 (2015) 95–99.
  • 12. Surendran S., Sankar K.V., Berchmans L.J., Selvan R.K., Polyol synthesis of α-NiS particles and its physic-chemical properties, Mater. Sci. Semicon. Proc. 33 (2015) 16–23.
  • 13. Kim H.J., Yeo T.B., Kim S.K., Rao S.S., Savariraj A.D., Prabakar K., Gopi C.V. V.M., Optimal-Temperature-Based Highly Efficient NiS Counter Electrode for Quantum-Dot-Sensitized Solar Cells, Eur. J. Inorg. Chem. (2014) 4281–4286.
  • 14. Kim H.J., Kim S.W., Gopi C.V.V.M., Kim S.K., Rao S.S., Jeong M.S., Improved performance of quantum dot-sensitized solar cells adopting a highly efficient cobalt sulfide/nickel sulfide composite thin film counter electrode, J. Power Sources 268 (2014) 163–170.
  • 15. Gopi C.V.V.M., Rao S.S., Kim S.-K., Punnoose D., Kim H.-J., Highly effective nickel sulfide counter electrode catalyst prepared by optimal hydrothermal treatment for quantum dot-sensitized solar cells, J. Power Sources 275 (2015) 547–556.
  • 16. Sun C.C., Ma M.Z., Yang J., Zhang Y.F., Chen P., Huang W., Dong X.C., Phase-controlled synthesis of alpha-NiS nanoparticles confined in carbon nanorods for high performance supercapacitors, Sci. rep. 4 (2014) 7054.
  • 17. Chen H.C., Jiang J.J., Zhao Y.D., Zhang L., Guo D.Q., Xia D.D., One-pot synthesis of porous nickel cobalt sulphides: tuning the composition for superior pseudocapacitance, J. Mate. Chem. A 3 (2015) 428–437.
  • 18. Yu L., Yang B., Liu Q., Liu J., Wang X., Song D., Wang J., Jing X., Interconnected NiS nanosheets supported by nickel foam: Soaking fabrication and supercapacitors application, J. Electroanal. Chem. 739 (2015) 156–163.
  • 19. Wang Y., Zhu Q.S., Tao L., Su X.W., Controlled synthesis of NiS hierarchical hollow microspheres with different building blocks and their application in lithium batteries, J. Mater. Chem. 21 (2011) 9248–9254.
  • 20. Tao H.C., Yang X.L., Zhang L.L., Ni B.B., One step synthesis of nickel sulfide/N-doped graphene composite as anode material for lithium ion batteries, J. Electroanal. Chem. 739 (2015) 36–42.
  • 21. Zhang Z.J., Zhao H.L., Zeng Z.P., Gao C.H., Wang J., Xia Q., Hierarchical architecture NiS@SiO2 nanoparticles enveloped in grapheme sheets as anode material for lithium ion batteries, Electrochim. Acta 155 (2014) 85–92.
  • 22. Balayeva O.O., Azizov A.A., Muradov M.B., Maharramov A.M., Eyvazova G.M., Alosmanov R.M., Mamiyev Z.Q., Aghamaliyev Z.A., β-NiS and Ni3S4 nanostructures: Fabrication and characterization, Mater. Res. Bull. 75 (2016) 155-161.
  • 23. Shinde N.M., Xia Q.X., Shinde P.V., Yun J.M., Mane R.S., Kim K.H., Sulphur Source-Inspired Self-Grown 3D NixSy Nanostructures and Their Electrochemical Supercapacitors, ACS Appl. Mater. Inter. 11 (2019) 4551-4559.
  • 24. Lee H., Kanai M., Kawai T., Kawai S., Growth of Oriented NiS Films on Si(111) and Al2O3(O12) Substrate by Pulsed Laser Ablation, Jpn. J. Appl. Phys. 32 (1993) 2100.
  • 25. Sartale S.D., Lokhande C.D., Preparation and characterization of nickel sulphide thin films using successive ionic layer adsorption and reaction (SILAR) method, Mater. Chem. Phys. 72 (2001) 101-104.
  • 26. Yu S.H., Yoshimura M., Fabrication of Powders and Thin Films of Various Nickel Sulfides by Soft Solution-Processing Routes, Adv. Funct. Mater. 12 (2002) 277-285.
  • 27. Zhang L., Yu J.C., Mo M., Wu L., Li Q., Kwong K.W., General Solution-Phase Approach to Oriented Nanostructured Films of Metal Chalcogenides on Metal Foils: The Case of Nickel Sulfide, J. Am. Chem. Soc. 126 (2004) 8116–8117.
  • 28. Akhtar M., Revaprasadu N., Malik M.A., Raftery J., Deposition of phase pure nickel sulfide thin films from bis(O-alkylxanthato)–nickel(II) complexes by the aerosolassisted chemical vapour deposition (AACVD) method, Mater. Sci. Semicon. Proc. 30 (2015) 368–375.
  • 29. Mahadik A.S., Khalate S.A., Kate R.S., Deokate R.J., Chemical Spray Deposited Nickel Sulphide Thin Films for Supercapacitor applications, I. Res. J. Sci. Eng. Special Issue A1 (2017) 195–198.
  • 30. Cheng Z., Abernathy H., Liu M., Raman Spectroscopy of Nickel Sulfide Ni3S2, J. Phys. Chem. C 111 (2007) 17997-18000.
  • 31. Saeed S., Rashid N., Growth and characterization of semiconducting nickel sulfide nanocrystals from air-stable single-source metal organic precursors, Cogent Chem. 1 (2015) 1030195.
  • 32. Chen F., Yang H., Wang X., Yu H., Facile synthesis and enhanced photocatalytic H2-evolution performance of NiS2-modified g-C3N4 photocatalysts, Chinese J. Catal. 38 (2017) 296–304.
  • 33. Benramache S., Aoun Y., Lakel S., Benhaoua B., Torchi C., The calculate of optical gap energy and urbach energy of Ni1−xCoxO thin films, Sādhanā 44 (2018) 26.
  • 34. Klug H.P., Alexander L.E., X-ray diffraction procedures: for polycrystalline and amorphous materials, X-Ray Diffraction Procedures: For Polycrystalline and Amorphous Materials, 2nd Edition, by Harold P. Klug, Leroy E. Alexander, pp. 992. ISBN 0-471-49369-4. Wiley-VCH, May 1974, p. 992, 1974.
  • 35. Ho T.A., Bae C.k., Nam H., Kim E., Lee S.Y., Park J.H., Shin H., Metallic Ni3S2 Films Grown by Atomic Layer Deposition as an Efficient and Stable Electrocatalyst for Overall Water Splitting, ACS Appl. Mater. Inter. 16 (2018) 12807–12815.
  • 36. Dias da Silva J., Campomanes R., Leite D., Orapunt F., O’Leary S.K., Relationship between the optical gap and the optical-absorption tail breadth in amorphous GaAs, J. appl. Phys. 96 (2004) 7052-7059.
  • 37. Tauc J., Menth A., States in the gap, J. non-cryst. Solids 8 (1972) 569-585.
  • 38. Urbach F., The long-wavelength edge of photographic sensitivity and of the electronic absorption of solids, Phys. Rev. 92 (1953) 1324.
  • 39. Benramache S., Aouassa M., Preparation and Characterization of p‒Type Semiconducting NiO Thin Films Deposited by Sol‒Gel Technique, J. Chem. Mater. Res. 5 (2016) 119–122.
  • 40. Schmachtenberg V.A.V., Tontini G., Koch J.A., Semione G.D.L., Drago V., Low temperature solventless syntheses of nanocrystalline nickel sulfides with different sulfur sources, J. Phys. Chem. Solids 87 (2015) 253–258.
  • 41. Reddy A.J., Kokila M.K., Nagabhushana H., Sharma S.C., Rao J.L., Shivakumara C., Nagabhushana B.M., R.P.S. Chakradhar, Structural, EPR, photo and thermoluminescence properties of ZnO:Fe nanoparticles, Mater. Chem. Phys. 133 (2012) 876-883.
  • 42. Boughalmi R., Boukhachem A., Kahlaoui M., Maghraoui H., Amlouk M., Physical investigations on Sb2S3 sprayed thin film for optoelectronic applications, Mater. Sci. Semicon. Proc. 26 (2014) 593-602.
  • 43. Caglar M., Ilican S., Caglar Y., Influence of dopant concentration on the optical properties of ZnO: in films by sol–gel method, Thin Solid Films 517 (2009) 5023-5028.
  • 44. J. Tauc, A. Menth, States in the gap, J. Non-Cryst. Solids 8-10 (1972) 569-585.
  • 45. Slama S., Bouhafs M., Ben Mahmoud K.B., Boubaker A, polynomials solution to heat equation for monitoring A3 point evolution during resistance spot welding, I. J. Heat Techn. 26 (2008) 141-149.
  • 46. Pankove J.I., in: Optical Processes in Semiconductors, Prentice-Hall, New Jersey, 1971, p. 92
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9983f0c3-8ffd-4342-a39d-3c67abaa861a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.