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Abstrat. In this paper we give an analytial method of solution to the problem of

orretion of the tehnial system parameters in order to redue the planned ommon

risk of tehnial system safety violation.

In the artile [1℄ we onsidered the possibility and assumptions under whih

the ommon risk (riterion) y = f(x) of tehnial system safety violation is

expressed as a sum of partiular risks ui(x) on a ertain threats for safety

violation, i.e.

y = f(x) = u1(x) + u2(x) + . . . + un(x). (1)

Let ui(x) be a polynomial

ui(x) = Ci ·

m∏

j=1

x
aij

j , Ci > 0, i = 1, 2, . . . , n, (2)

and the vetor x = (x1, x2, . . . , xm) of some parameters xj be positive.

The matrix A = (aij) is alled an exponent matrix. Suppose that the ma-

trix A = (aij) =

(
B

H

)

, where the basis B is an m × m matrix (| B |�= 0)

and the submatrix H ontains d rows of matrix A, whih do not belong to the

basis B. The di�ulty level is haraterized by this number d: d = n−m. The

oe�ients aij and Ci are got by methods of linear regression analysis [2℄.

A seleted set (vetor) x will be alled a projet of system safety.
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Suppose that the projet x∗ ensures the minimum value y∗ = f(x∗) of the

ommon risk y (see [3℄); then the projet x∗ will be alled a perfet projet.

Numerial method for obtaining the values y∗ and x∗ was proposed in [4,5℄.

Assume that the perfet projet x∗ is not aepted on aount of osts.

Therefore, a maximum aeptable risk ȳ suh that y∗ < ȳ is given, and the

requirement y = f(x) < ȳ should be ful�lled (for more details we refer the

reader to [5, 6℄).

Let x(1) = (x
(1)
1 , x

(1)
2 , . . . , x

(1)
m ) of some parameters x

(1)
1 be a projet satis-

fying y = f(x) ≤ ȳ for x = x(1).

The value y(1) = f(x(1)) will be alled the planned risk of tehnial system

safety violation. By the above, we have y∗ ≤ y(1) ≤ �y.

On the basis of projet x(1) and x∗, reomendations on possible improve-

ment of the planned parameters x
(1)
j , j = 1, 2, . . . ,m should be given.

In other words, we should propose a new projet x̃ suh that the value

ỹ = f(x̃) of the ommon risk is less than the planned risk. Furthermore, it

satis�es the inequality y∗ ≤ ỹ < y(1).

In order to solve this problem we shall need some results of the Theorem

whih is proved below. Aording to this Theorem, the funtion y = f(x) of

(1) satis�es the inequality

f(x∗) < f((x(1))λ · x1−λ
∗

) < f(x(1)). (3)

Here (x(1))λ · x1−λ
∗

= x̃ is a new projet with parameters

x̃j = (x
(1)
j )λ · x1−λ

j∗ (4)

for eah λ from the interval 0 < λ < 1.
The number ȳ is the value of the ommon risk for the improved projet.

Substituting the di�erent values λ ∈ (0; 1) in (4), we obtain the set of new

projets x̃, eah of whih satis�es f(x̃) ≤ ȳ.

The ommon risk ỹ for the new projet x̃ is less than or equal to y(1) :

f(x̃) ≤ f(x(1)). For this reason, it is advisable to hange the projet x(1) by

the projet x̃.

Example. Let the ommon risk be given as a funtion

y = f(x) =
1

100
·

(

2x2
1 · x2 + 3x1 · x

2
2 + 4

1

x1
·

1

x2

)

of the parameters x1, x2. Let ȳ=0.109 be the maximum aeptable value of

this risk.

Minimizing the funtion y = f(x) aording to [3℄, we get the minimum

value y∗=0.085 of the riterium and the perfet projet x∗ with parameters

x1∗ = 1.08 and x2∗ = 0.72.
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Assume that the projet x∗ is not aepted on aount of osts. Suppose

that the projet x(1) =[1.04;1.04℄ is brought up for disussion. Substituting

x(1) into (1) yields the value of the ommon risk: y(1) = f(x(1)) = 0.093, whih

satis�es the inequality y(1) < ȳ = 0.109.

It is neessary to propose an improved projet x̃.

Solution. Take a number λ ∈ (0; 1), for example, λ = 0.4 and de�ne the new

projet x̃ = [x̃1, x̃2], where x̃1 = 1.040.4 ·1.080.6 = 1.07, x̃2 = 1.040.4 ·0.720.6 =

0.84. It an be easily heked that the orresponding value ỹ = f(x̃) = 0.086.

If the new projet satis�es us for the eonomi reason, then x̃ an be aepted

beause ỹ < y(1).

Now these alulations will be substantiated for d = 1.

Theorem. Let A = (aij) be the matrix orresponding to the riterion

y = f(x) of (1). Further A0 = (A,1), where 1 is a olumn of ones, is a square

and nonsingular matrix. Moreover a unique solution δ = (δ1, δ2, . . . , δn) =
(0, 0, . . . , 0
︸ ︷︷ ︸

m

, 1) · A−1
0 of the equality δ · A0 = (0, 0, . . . , 0

︸ ︷︷ ︸

m

, 1) is positive: δ > 0.

Suppose that f(x) ≤ y and y∗ ≤ y; then the following statements are true:

1. The vetor x∗ with the omponents

xj∗ =

n∏

i=1

(
δi · y∗

Ci

)kji

, j = 1, 2, . . . ,m, (5)

is one of the solutions of the inequality f(x) ≤ ȳ, where kji are the elements

of the inverse matrix B−1 = (kji). Similarly, the vetor

xj =

n∏

i=1

(
δi · ȳ

Ci

)kji

, j = 1, 2, . . . ,m, (6)

is the solution of the same inequality f(x) ≤ ȳ.

2. Suppose that α(1) = (α
(1)
1 , α

(1)
2 , . . . , α

(1)
n ) and α(2) = (α

(2)
1 , α

(2)
2 , . . . , α

(2)
n )

are the solutions of the so alled generative inequality

αδ1
1 · αδ2

2 · · ·αδn
n ≥ r, (7)

where αi > 0, α1 + α2 + · · · + αn = 1, and r =
∏n

i=1 C
δi
i

y
.

Substituting these solutions into (6) in plae of δi, we obtain two solutions:

x(1) = (x
(1)
1 , x

(1)
2 , . . . , x

(1)
m ) > 0 and x(2) = (x

(2)
1 , x

(2)
2 , . . . , x

(2)
m ) > 0 of the

inequality f(x) ≤ ȳ.
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Then for any number λ ∈ [0; 1] the vetor x̃ = (x(1))λ · (x(2))1−λ with the

omponents x̄j = (x
(1)
j )λ · (x

(2)
j )1−λ is the solution of the same inequality

f(x) ≤ ȳ, i.e.

(f(x(1)) ≤ ȳ, f(x(2)) ≤ ȳ) ⇒ (f(x̃) ≤ ȳ). (8)

Moreover,

(

xj ∈
[

x
(1)
j , x

(2)
j

]

, j = 1, 2, . . . ,m
)

=⇒



y =

n∑

i=1

Ci

m∏

j=1

x
aij

j ∈ [y∗, y]



 (9)

Proof.

1. Aording to [3℄, the vetor x∗ with omponents from (5) guarantees

that f(x) of (1) has a minimum at x∗: f(x∗) = y∗. Under the onditions of the

Theorem, it follows that x∗ is the solution of f(x) ≤ ȳ, i.e. f(x∗) = y∗ ≤ ȳ.

Let us onsider inequality (7) and the vetor α = δ with omponents αi = δi

for whih the minimum y∗ =
∏n

i=1(
Ci

δi
)δi is ourred (see [3℄).

We laim that the inequality αδ1
1 · αδ2

2 · · ·αδn
n ≤ δδ1

1 · δδ2
2 · · · δδn

n is ful-

�lled for �xed numbers δi > 0, where δ1 + δ2 + . . . + δn = 1 and arbitrary

numbers αi > 0, where α1 + α2 + . . . αn = 1. Indeed, if the funtion g(α)
has the form g(α) = αδ1

1 · αδ2
2 · · ·αδn

n , then there exists the Lagrange funtion

L = ln g(α) + λ(1 − (α1 + α2 + . . . αn)). Consider the equations L′

αi
=

( δi

αi
− λ) = 0, so δi

αi
= λ, i = 1, 2, . . . , n. From these equations we obtain

δi = λαi,
∑n

i=1 δi = λ ·
∑n

i=1 αi, and λ = 1.

Thus, the funtion g(α) has an extremum at the point with omponents

αi = δi. Sine L′′

α2
i

= − δi

α2
i

< 0 and L′′

αiαj
= 0, (i�=j), we see that the matrix

(L′′

αiαj
) of seond partial derivatives for the Lagrange funtion is negative

de�nite. This means that the funtion g(α) takes the maximum at the point

with omponents αi = δi. Hene g(α) = αδ1
1 · αδ2

2 · · ·αδn
n ≤ δδ1

1 · δδ2
2 · · · δδn

n .

An equality sign is ahieved if and only if αi = δi. Now the inequality yields

(αδ1
1 ·αδ2

2 · · ·αδn
n ≥ q) ⇒ (δδ1

1 ·δδ2
2 · · · δδn

n ≥ q). This relationship and Theorem 1

from [3℄ show that the vetor α (= δ) with omponents αi = δi is one of the

solutions of (7) orresponding to the solution (6) of the inequality f(x) ≤ ȳ.

2. Suppose that x(1) = (x
(1)
1 , x

(1)
2 , . . . , x

(1)
m ) > 0 is the solution of f(x) ≤ ȳ.

The parameters x
(1)
j are reeived under hange of δi by α

(1)
i in (6), where α(1)

is one of the solutions of the generative inequality (7).

Then, by the results of [3℄, there exist x
(1)
m+1 = x

(1)
m+2 = . . . = x

(1)
m+n−1 = 1,

x
(1)
m+n =

∏n
i=1

(

α
(1)
i ·ȳ

Ci

)δi·µ

≥ 1 suh that the vetor ln(x(1))
′

= (ln x
(1)
1 , ln x

(1)
2 ,
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. . . , ln x
(1)
m+n) is the solution of the equation A1 · ln x

′

= ln b(α), where the

matrix A1 = (A.In) and b(α) = (ln(α1·ȳ
C1

, ln(α2·ȳ
C2

, . . . , ln(αn·ȳ
Cn

).

Similarly, if x(2) > 0 is the solution of f(x) ≤ ȳ with omponents x
(2)
j ,

j = 1, 2, . . . ,m, whih are reeived under substitution of δi by α
(2)
i in (6),

where α(2) is one of the solutions of the generative inequality (7), then there

exist x
(2)
m+1 = x

(2)
m+2 = . . . = x

(2)
m+n−1 = 1, x(2) =

∏n
i=1

(

α
(2)
i ·ȳ

Ci

)δi·µ

≥ 1 suh

that the vetor ln(x(2))
′

= (ln x
(2)
1 , ln x

(2)
2 , . . . , ln x

(2)
m+n) is the solution of the

equation A1 · ln x
′

= ln b(α).

Suppose that λ ∈ [0; 1]. Sine A1(λ ln(x(1))
′

+ (1 − λ) ln(x(2))
′

) =
λA1 · ln(x(1))

′

+ (1 − λ)A1 · ln(x(2))
′

= λ ln b(α) + (1 − λ) ln b(α) = ln b(α),
we see that the vetor ln(x̃)

′

= λ ln(x(1))
′

+ (1 − λ) ln(x(2))
′

, where

x̃
′

= (x(1))
′λ · (x(2))

′(1−λ), is the solution of the inequality A1 · ln x
′

= ln b(α).

The elements x̃
′

j = (x
(1)
j )

′λ · (x
(2)
j )

′(1−λ) are omponents of the vetor x̃
′

.

Thus, from the formulas for (x
(1)
j )

′

and (x
(2)
j )

′

, it follows that

x̃
′

j = x̃j = (

n∏

i=1

(

α
(1)
i · ȳ

Ci

)kij

)λ · (

n∏

i=1

(

α
(2)
i · ȳ

Ci

)kij

)1−λ, j = 1, 2, . . . ,m,

x̃
′

m+1 = x̃
′

m+2 = . . . = x̃
′

m+n−1 = 1,

x̃
′

m+n = (

n∏

i=1

(

α
(1)
i · ȳ

Ci

)δi·µ

)λ · (

n∏

i=1

(

α
(2)
i · ȳ

Ci

)δi·µ

)1−λ ≥ 1.

Here µ is equal to the sum of omponents of the row matrix (−an · B−1, 1),
where an is the last row of the exponent matrix A. These expressions and

the results of [3℄ allow us to reah the onlusion that the vetor x̃
′

with

omponents x̃
′

j = x̃j = (x
(1)
j )λ · (x

(2)
j )1−λ, j = 1, 2, . . . ,m is the solution of

the inequality f(x) ≤ ȳ. Hene the relationship (8) holds.

Sine λ is any number in [0;1℄, then min(x
(1)
j , x

(2)
j ) ≤ x̃j ≤ max(x

(1)
j , x

(2)
j ),

i.e. x̃j ∈ [x
(1)
j , x

(2)
j ].

Therefore, the inequality f(x) ≤ ȳ is ful�lled for all vetors x = x̃ with

omponents xj = [x
(1)
j , x

(2)
j ]. Moreover, sine y∗ = f(x∗) and y∗ ≤ ȳ, then

(

xj ∈
[

x
(1)
j , x

(2)
j

]

, j = 1, 2, . . . ,m
)

=⇒
(

y =
∑n

i=1 Ci

∏m
j=1 x

aij

j ∈ [y∗, y]
)

.

Thus, we have proved the relationship (9).
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