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Abstra
t. In this paper we give an analyti
al method of solution to the problem of


orre
tion of the te
hni
al system parameters in order to redu
e the planned 
ommon

risk of te
hni
al system safety violation.

In the arti
le [1℄ we 
onsidered the possibility and assumptions under whi
h

the 
ommon risk (
riterion) y = f(x) of te
hni
al system safety violation is

expressed as a sum of parti
ular risks ui(x) on a 
ertain threats for safety

violation, i.e.

y = f(x) = u1(x) + u2(x) + . . . + un(x). (1)

Let ui(x) be a polynomial

ui(x) = Ci ·

m∏

j=1

x
aij

j , Ci > 0, i = 1, 2, . . . , n, (2)

and the ve
tor x = (x1, x2, . . . , xm) of some parameters xj be positive.

The matrix A = (aij) is 
alled an exponent matrix. Suppose that the ma-

trix A = (aij) =

(
B

H

)

, where the basis B is an m × m matrix (| B |�= 0)

and the submatrix H 
ontains d rows of matrix A, whi
h do not belong to the

basis B. The di�
ulty level is 
hara
terized by this number d: d = n−m. The


oe�
ients aij and Ci are got by methods of linear regression analysis [2℄.

A sele
ted set (ve
tor) x will be 
alled a proje
t of system safety.
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Suppose that the proje
t x∗ ensures the minimum value y∗ = f(x∗) of the


ommon risk y (see [3℄); then the proje
t x∗ will be 
alled a perfe
t proje
t.

Numeri
al method for obtaining the values y∗ and x∗ was proposed in [4,5℄.

Assume that the perfe
t proje
t x∗ is not a

epted on a

ount of 
osts.

Therefore, a maximum a

eptable risk ȳ su
h that y∗ < ȳ is given, and the

requirement y = f(x) < ȳ should be ful�lled (for more details we refer the

reader to [5, 6℄).

Let x(1) = (x
(1)
1 , x

(1)
2 , . . . , x

(1)
m ) of some parameters x

(1)
1 be a proje
t satis-

fying y = f(x) ≤ ȳ for x = x(1).

The value y(1) = f(x(1)) will be 
alled the planned risk of te
hni
al system

safety violation. By the above, we have y∗ ≤ y(1) ≤ �y.

On the basis of proje
t x(1) and x∗, re
omendations on possible improve-

ment of the planned parameters x
(1)
j , j = 1, 2, . . . ,m should be given.

In other words, we should propose a new proje
t x̃ su
h that the value

ỹ = f(x̃) of the 
ommon risk is less than the planned risk. Furthermore, it

satis�es the inequality y∗ ≤ ỹ < y(1).

In order to solve this problem we shall need some results of the Theorem

whi
h is proved below. A

ording to this Theorem, the fun
tion y = f(x) of

(1) satis�es the inequality

f(x∗) < f((x(1))λ · x1−λ
∗

) < f(x(1)). (3)

Here (x(1))λ · x1−λ
∗

= x̃ is a new proje
t with parameters

x̃j = (x
(1)
j )λ · x1−λ

j∗ (4)

for ea
h λ from the interval 0 < λ < 1.
The number ȳ is the value of the 
ommon risk for the improved proje
t.

Substituting the di�erent values λ ∈ (0; 1) in (4), we obtain the set of new

proje
ts x̃, ea
h of whi
h satis�es f(x̃) ≤ ȳ.

The 
ommon risk ỹ for the new proje
t x̃ is less than or equal to y(1) :

f(x̃) ≤ f(x(1)). For this reason, it is advisable to 
hange the proje
t x(1) by

the proje
t x̃.

Example. Let the 
ommon risk be given as a fun
tion

y = f(x) =
1

100
·

(

2x2
1 · x2 + 3x1 · x

2
2 + 4

1

x1
·

1

x2

)

of the parameters x1, x2. Let ȳ=0.109 be the maximum a

eptable value of

this risk.

Minimizing the fun
tion y = f(x) a

ording to [3℄, we get the minimum

value y∗=0.085 of the 
riterium and the perfe
t proje
t x∗ with parameters

x1∗ = 1.08 and x2∗ = 0.72.
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Assume that the proje
t x∗ is not a

epted on a

ount of 
osts. Suppose

that the proje
t x(1) =[1.04;1.04℄ is brought up for dis
ussion. Substituting

x(1) into (1) yields the value of the 
ommon risk: y(1) = f(x(1)) = 0.093, whi
h

satis�es the inequality y(1) < ȳ = 0.109.

It is ne
essary to propose an improved proje
t x̃.

Solution. Take a number λ ∈ (0; 1), for example, λ = 0.4 and de�ne the new

proje
t x̃ = [x̃1, x̃2], where x̃1 = 1.040.4 ·1.080.6 = 1.07, x̃2 = 1.040.4 ·0.720.6 =

0.84. It 
an be easily 
he
ked that the 
orresponding value ỹ = f(x̃) = 0.086.

If the new proje
t satis�es us for the e
onomi
 reason, then x̃ 
an be a

epted

be
ause ỹ < y(1).

Now these 
al
ulations will be substantiated for d = 1.

Theorem. Let A = (aij) be the matrix 
orresponding to the 
riterion

y = f(x) of (1). Further A0 = (A,1), where 1 is a 
olumn of ones, is a square

and nonsingular matrix. Moreover a unique solution δ = (δ1, δ2, . . . , δn) =
(0, 0, . . . , 0
︸ ︷︷ ︸

m

, 1) · A−1
0 of the equality δ · A0 = (0, 0, . . . , 0

︸ ︷︷ ︸

m

, 1) is positive: δ > 0.

Suppose that f(x) ≤ y and y∗ ≤ y; then the following statements are true:

1. The ve
tor x∗ with the 
omponents

xj∗ =

n∏

i=1

(
δi · y∗

Ci

)kji

, j = 1, 2, . . . ,m, (5)

is one of the solutions of the inequality f(x) ≤ ȳ, where kji are the elements

of the inverse matrix B−1 = (kji). Similarly, the ve
tor

xj =

n∏

i=1

(
δi · ȳ

Ci

)kji

, j = 1, 2, . . . ,m, (6)

is the solution of the same inequality f(x) ≤ ȳ.

2. Suppose that α(1) = (α
(1)
1 , α

(1)
2 , . . . , α

(1)
n ) and α(2) = (α

(2)
1 , α

(2)
2 , . . . , α

(2)
n )

are the solutions of the so 
alled generative inequality

αδ1
1 · αδ2

2 · · ·αδn
n ≥ r, (7)

where αi > 0, α1 + α2 + · · · + αn = 1, and r =
∏n

i=1 C
δi
i

y
.

Substituting these solutions into (6) in pla
e of δi, we obtain two solutions:

x(1) = (x
(1)
1 , x

(1)
2 , . . . , x

(1)
m ) > 0 and x(2) = (x

(2)
1 , x

(2)
2 , . . . , x

(2)
m ) > 0 of the

inequality f(x) ≤ ȳ.
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Then for any number λ ∈ [0; 1] the ve
tor x̃ = (x(1))λ · (x(2))1−λ with the


omponents x̄j = (x
(1)
j )λ · (x

(2)
j )1−λ is the solution of the same inequality

f(x) ≤ ȳ, i.e.

(f(x(1)) ≤ ȳ, f(x(2)) ≤ ȳ) ⇒ (f(x̃) ≤ ȳ). (8)

Moreover,

(

xj ∈
[

x
(1)
j , x

(2)
j

]

, j = 1, 2, . . . ,m
)

=⇒



y =

n∑

i=1

Ci

m∏

j=1

x
aij

j ∈ [y∗, y]



 (9)

Proof.

1. A

ording to [3℄, the ve
tor x∗ with 
omponents from (5) guarantees

that f(x) of (1) has a minimum at x∗: f(x∗) = y∗. Under the 
onditions of the

Theorem, it follows that x∗ is the solution of f(x) ≤ ȳ, i.e. f(x∗) = y∗ ≤ ȳ.

Let us 
onsider inequality (7) and the ve
tor α = δ with 
omponents αi = δi

for whi
h the minimum y∗ =
∏n

i=1(
Ci

δi
)δi is o

urred (see [3℄).

We 
laim that the inequality αδ1
1 · αδ2

2 · · ·αδn
n ≤ δδ1

1 · δδ2
2 · · · δδn

n is ful-

�lled for �xed numbers δi > 0, where δ1 + δ2 + . . . + δn = 1 and arbitrary

numbers αi > 0, where α1 + α2 + . . . αn = 1. Indeed, if the fun
tion g(α)
has the form g(α) = αδ1

1 · αδ2
2 · · ·αδn

n , then there exists the Lagrange fun
tion

L = ln g(α) + λ(1 − (α1 + α2 + . . . αn)). Consider the equations L′

αi
=

( δi

αi
− λ) = 0, so δi

αi
= λ, i = 1, 2, . . . , n. From these equations we obtain

δi = λαi,
∑n

i=1 δi = λ ·
∑n

i=1 αi, and λ = 1.

Thus, the fun
tion g(α) has an extremum at the point with 
omponents

αi = δi. Sin
e L′′

α2
i

= − δi

α2
i

< 0 and L′′

αiαj
= 0, (i�=j), we see that the matrix

(L′′

αiαj
) of se
ond partial derivatives for the Lagrange fun
tion is negative

de�nite. This means that the fun
tion g(α) takes the maximum at the point

with 
omponents αi = δi. Hen
e g(α) = αδ1
1 · αδ2

2 · · ·αδn
n ≤ δδ1

1 · δδ2
2 · · · δδn

n .

An equality sign is a
hieved if and only if αi = δi. Now the inequality yields

(αδ1
1 ·αδ2

2 · · ·αδn
n ≥ q) ⇒ (δδ1

1 ·δδ2
2 · · · δδn

n ≥ q). This relationship and Theorem 1

from [3℄ show that the ve
tor α (= δ) with 
omponents αi = δi is one of the

solutions of (7) 
orresponding to the solution (6) of the inequality f(x) ≤ ȳ.

2. Suppose that x(1) = (x
(1)
1 , x

(1)
2 , . . . , x

(1)
m ) > 0 is the solution of f(x) ≤ ȳ.

The parameters x
(1)
j are re
eived under 
hange of δi by α

(1)
i in (6), where α(1)

is one of the solutions of the generative inequality (7).

Then, by the results of [3℄, there exist x
(1)
m+1 = x

(1)
m+2 = . . . = x

(1)
m+n−1 = 1,

x
(1)
m+n =

∏n
i=1

(

α
(1)
i ·ȳ

Ci

)δi·µ

≥ 1 su
h that the ve
tor ln(x(1))
′

= (ln x
(1)
1 , ln x

(1)
2 ,
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. . . , ln x
(1)
m+n) is the solution of the equation A1 · ln x

′

= ln b(α), where the

matrix A1 = (A.In) and b(α) = (ln(α1·ȳ
C1

, ln(α2·ȳ
C2

, . . . , ln(αn·ȳ
Cn

).

Similarly, if x(2) > 0 is the solution of f(x) ≤ ȳ with 
omponents x
(2)
j ,

j = 1, 2, . . . ,m, whi
h are re
eived under substitution of δi by α
(2)
i in (6),

where α(2) is one of the solutions of the generative inequality (7), then there

exist x
(2)
m+1 = x

(2)
m+2 = . . . = x

(2)
m+n−1 = 1, x(2) =

∏n
i=1

(

α
(2)
i ·ȳ

Ci

)δi·µ

≥ 1 su
h

that the ve
tor ln(x(2))
′

= (ln x
(2)
1 , ln x

(2)
2 , . . . , ln x

(2)
m+n) is the solution of the

equation A1 · ln x
′

= ln b(α).

Suppose that λ ∈ [0; 1]. Sin
e A1(λ ln(x(1))
′

+ (1 − λ) ln(x(2))
′

) =
λA1 · ln(x(1))

′

+ (1 − λ)A1 · ln(x(2))
′

= λ ln b(α) + (1 − λ) ln b(α) = ln b(α),
we see that the ve
tor ln(x̃)

′

= λ ln(x(1))
′

+ (1 − λ) ln(x(2))
′

, where

x̃
′

= (x(1))
′λ · (x(2))

′(1−λ), is the solution of the inequality A1 · ln x
′

= ln b(α).

The elements x̃
′

j = (x
(1)
j )

′λ · (x
(2)
j )

′(1−λ) are 
omponents of the ve
tor x̃
′

.

Thus, from the formulas for (x
(1)
j )

′

and (x
(2)
j )

′

, it follows that

x̃
′

j = x̃j = (

n∏

i=1

(

α
(1)
i · ȳ

Ci

)kij

)λ · (

n∏

i=1

(

α
(2)
i · ȳ

Ci

)kij

)1−λ, j = 1, 2, . . . ,m,

x̃
′

m+1 = x̃
′

m+2 = . . . = x̃
′

m+n−1 = 1,

x̃
′

m+n = (

n∏

i=1

(

α
(1)
i · ȳ

Ci

)δi·µ

)λ · (

n∏

i=1

(

α
(2)
i · ȳ

Ci

)δi·µ

)1−λ ≥ 1.

Here µ is equal to the sum of 
omponents of the row matrix (−an · B−1, 1),
where an is the last row of the exponent matrix A. These expressions and

the results of [3℄ allow us to rea
h the 
on
lusion that the ve
tor x̃
′

with


omponents x̃
′

j = x̃j = (x
(1)
j )λ · (x

(2)
j )1−λ, j = 1, 2, . . . ,m is the solution of

the inequality f(x) ≤ ȳ. Hen
e the relationship (8) holds.

Sin
e λ is any number in [0;1℄, then min(x
(1)
j , x

(2)
j ) ≤ x̃j ≤ max(x

(1)
j , x

(2)
j ),

i.e. x̃j ∈ [x
(1)
j , x

(2)
j ].

Therefore, the inequality f(x) ≤ ȳ is ful�lled for all ve
tors x = x̃ with


omponents xj = [x
(1)
j , x

(2)
j ]. Moreover, sin
e y∗ = f(x∗) and y∗ ≤ ȳ, then

(

xj ∈
[

x
(1)
j , x

(2)
j

]

, j = 1, 2, . . . ,m
)

=⇒
(

y =
∑n

i=1 Ci

∏m
j=1 x

aij

j ∈ [y∗, y]
)

.

Thus, we have proved the relationship (9).
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