A CORRECTION METHOD FOR PROJECTS MINIMIZATION CRITERION

Andrzej Yatsko

Chair of Mathematics, Technical University of Koszalin str. Śniadeckich 2, 75-453 Koszalin, Poland e -mail: ayac@plusnet.pl

Abstract. In this paper we give an analytical method of solution to the problem of orre
tion of the te
hni
al system parameters in order to redu
e the ^planned ommon risk of te
hni
al system safety violation.

In the article $[1]$ we considered the possibility and assumptions under which the common risk (criterion) $y = f(x)$ of technical system safety violation is expressed as a sum of particular risks $u_i(x)$ on a certain threats for safety violation, i.e.

$$
y = f(x) = u_1(x) + u_2(x) + \ldots + u_n(x). \tag{1}
$$

Let $u_i(x)$ be a polynomial

$$
u_i(x) = C_i \cdot \prod_{j=1}^m x_j^{a_{ij}}, \quad C_i > 0, \quad i = 1, 2, \dots, n,
$$
 (2)

and the vector $x = (x_1, x_2, \ldots, x_m)$ of some parameters x_j be positive. The matrix $A = (a_{ij})$ is called an exponent matrix. Suppose that the matrix $A = (a_{ij}) = \begin{pmatrix} B \\ H \end{pmatrix}$ H \setminus , where the basis B is an $m \times m$ matrix ($|B| \neq 0$) and the submatrix H contains d rows of matrix A , which do not belong to the basis B. The difficulty level is characterized by this number d: $d = n - m$. The coefficients a_{ij} and C_i are got by methods of linear regression analysis [2].

A selected set (vector) x will be called a project of system safety.

Suppose that the project x_* ensures the minimum value $y_* = f(x_*)$ of the common risk y (see [3]); then the project x_* will be called a *perfect* project.

Numerical method for obtaining the values y_* and x_* was proposed in [4,5]

Assume that the perfect project x_* is not accepted on account of costs. Therefore, a maximum acceptable risk \bar{y} such that $y_* < \bar{y}$ is given, and the requirement $y = f(x) < \bar{y}$ should be fulfilled (for more details we refer the reader to $[5, 6]$).

Let $x^{(1)} = (x_1^{(1)}$ $\binom{11}{1}, x_2^{(1)}$ $(x_2^{(1)}, \ldots, x_m^{(1)})$ of some parameters $x_1^{(1)}$ 1 be a project satisfying $y = f(x) \leq \bar{y}$ for $x = x^{(1)}$.

The value $y^{(1)} = f(x^{(1)})$ will be called the *planned* risk of technical system safety violation. By the above, we have $y_* \leq y^{(1)} \leq \vec{y}$.

On the basis of project $x^{(1)}$ and x_* , recomendations on possible improvement of the planned parameters $x_i^{(1)}$ $j^{(1)}$, $j = 1, 2, \ldots, m$ should be given.

In other words, we should propose a new project \tilde{x} such that the value $\tilde{y} = f(\tilde{x})$ of the common risk is less than the planned risk. Furthermore, it satisfies the inequality $y_* \leq \tilde{y} < y^{(1)}$.

In order to solve this problem we shall need some results of the Theorem which is proved below. According to this Theorem, the function $y = f(x)$ of (1) satisfies the inequality

$$
f(x_*) < f((x^{(1)})^\lambda \cdot x_*^{1-\lambda}) < f(x^{(1)}).
$$
 (3)

Here $(x^{(1)})^{\lambda} \cdot x_*^{1-\lambda} = \tilde{x}$ is a new project with parameters

$$
\tilde{x}_j = (x_j^{(1)})^\lambda \cdot x_{j*}^{1-\lambda} \tag{4}
$$

for each λ from the interval $0 < \lambda < 1$.

The number \bar{y} is the value of the common risk for the *improved* project.

Substituting the different values $\lambda \in (0,1)$ in (4), we obtain the set of new projects \tilde{x} , each of which satisfies $f(\tilde{x}) \leq \bar{y}$.

The common risk $\tilde y$ for the new project $\tilde x$ is less than or equal to $y^{(1)}$: $f(\tilde{x}) \leq f(x^{(1)})$. For this reason, it is advisable to change the project $x^{(1)}$ by the project \tilde{x} .

Example. Let the common risk be given as a function

$$
y = f(x) = \frac{1}{100} \cdot \left(2x_1^2 \cdot x_2 + 3x_1 \cdot x_2^2 + 4\frac{1}{x_1} \cdot \frac{1}{x_2} \right)
$$

of the parameters x_1, x_2 . Let $\bar{y}=0.109$ be the maximum acceptable value of this risk.

Minimizing the function $y = f(x)$ according to [3], we get the minimum value $y_* = 0.085$ of the criterium and the perfect project x_* with parameters $x_1* = 1.08$ and $x_2* = 0.72$.

Assume that the project x_* is not accepted on account of costs. Suppose that the project $x^{(1)} = [1.04; 1.04]$ is brought up for discussion. Substituting $x^{(1)}$ into (1) yields the value of the common risk: $y^{(1)} = f(x^{(1)}) = 0.093$, which satisfies the inequality $y^{(1)} < \bar{y} = 0.109$.

It is necessary to propose an improved project \tilde{x} .

Solution. Take a number $\lambda \in (0,1)$, for example, $\lambda = 0.4$ and define the new project $\tilde{x}=[\tilde{x_1},\tilde{x_2}],$ where $\tilde{x_1}=1.04^{0.4}\cdot1.08^{0.6}=1.07,$ $\tilde{x_2}=1.04^{0.4}\cdot0.72^{0.6}=$ 0.84. It can be easily checked that the corresponding value $\tilde{y} = f(\tilde{x}) = 0.086$. If the new project satisfies us for the economic reason, then \tilde{x} can be accepted because $\tilde{y} < y^{(1)}$.

Now these calculations will be substantiated for $d = 1$.

Theorem. Let $A = (a_{ij})$ be the matrix corresponding to the criterion $y = f(x)$ of (1). Further $A_0 = (A, 1)$, where 1 is a column of ones, is a square and nonsingular matrix. Moreover a unique solution $\delta = (\delta_1, \delta_2, \dots, \delta_n)$ $(0, 0, \ldots, 0)$ $\frac{m}{m}$ $m \hspace{2.5cm} m$ $(0, 1) \cdot A_0^{-1}$ of the equality $\delta \cdot A_0 = (0, 0, \dots, 0)$ $\frac{m}{m}$, 1) is positive: $\delta > 0$. Suppose that $f(x) \leq \overline{y}$ and $y_* \leq \overline{y}$; then the following statements are true:

1. The vector x_* with the components

$$
x_{j*} = \prod_{i=1}^{n} \left(\frac{\delta_i \cdot y_*}{C_i}\right)^{k_{ji}}, \quad j = 1, 2, \dots, m,
$$
 (5)

is one of the solutions of the inequality $f(x) \leq \bar{y}$, where k_{ii} are the elements of the inverse matrix $B^{-1} = (k_{ii})$. Similarly, the vector

$$
x_j = \prod_{i=1}^n \left(\frac{\delta_i \cdot \bar{y}}{C_i}\right)^{k_{ji}}, \quad j = 1, 2, \dots, m,
$$
 (6)

is the solution of the same inequality $f(x) \leq \bar{y}$.

2. Suppose that $\alpha^{(1)} = (\alpha_1^{(1)})$ $\overset{(1)}{1},\overset{(1)}{\alpha_2^{(1)}}$ $\alpha_2^{(1)}, \ldots, \alpha_n^{(1)}$ and $\alpha^{(2)} = (\alpha_1^{(2)})$ $\overset{(2)}{1},\overset{(2)}{\alpha_2^2}$ $\alpha_2^{(2)}, \ldots, \alpha_n^{(2)}$ are the solutions of the so called *generative inequality*

$$
\alpha_1^{\delta_1} \cdot \alpha_2^{\delta_2} \cdots \alpha_n^{\delta_n} \ge r,\tag{7}
$$

where $\alpha_i > 0$, $\alpha_1 + \alpha_2 + \cdots + \alpha_n = 1$, and $r = \frac{\prod_{i=1}^n C_i^{\delta_i}}{\overline{y}}$.
Substituting these solutions into (6) in place of δ_i , we obtain two solutions:

 $x^{(1)} = (x_1^{(1)}$ $\binom{1}{1}, x_2^{(1)}$ $x_2^{(1)}, \ldots, x_m^{(1)}$ > 0 and $x^{(2)} = (x_1^{(2)})$ $\binom{2}{1}, x_2^{(2)}$ $x_2^{(2)}, \ldots, x_m^{(2)}$ > 0 of the inequality $f(x) \leq \bar{y}$.

Then for any number $\lambda \in [0,1]$ the vector $\tilde{x} = (x^{(1)})^{\lambda} \cdot (x^{(2)})^{1-\lambda}$ with the components $\bar{x}_j = (x_j^{(1)})$ $(j^{(1)})^{\lambda} \cdot (x_j^{(2)})$ $j^{(2)}$)^{1- λ} is the solution of the same inequality $f(x) \leq \bar{y}$, i.e.

$$
(f(x^{(1)}) \le \bar{y}, \ f(x^{(2)}) \le \bar{y}) \Rightarrow (f(\tilde{x}) \le \bar{y}). \tag{8}
$$

Moreover,

$$
\left(x_j \in \left[x_j^{(1)}, x_j^{(2)}\right], j = 1, 2, \dots, m\right) \Longrightarrow \left(y = \sum_{i=1}^n C_i \prod_{j=1}^m x_j^{a_{ij}} \in [y_*, \overline{y}]\right) \tag{9}
$$

Proof.

1. According to [3], the vector x_* with components from (5) guarantees that $f(x)$ of (1) has a minimum at x_* : $f(x_*) = y_*$. Under the conditions of the Theorem, it follows that x_* is the solution of $f(x) \leq \bar{y}$, i.e. $f(x_*) = y_* \leq \bar{y}$.

Let us consider inequality (7) and the vector $\alpha = \delta$ with components $\alpha_i = \delta_i$ for which the minimum $y_* = \prod_{i=1}^n (\frac{C_i}{\delta_i})$ $\frac{C_i}{\delta_i}$)^{δ_i} is occurred (see [3]).

We claim that the inequality $\alpha_1^{\delta_1} \cdot \alpha_2^{\delta_2} \cdots \alpha_n^{\delta_n} \leq \delta_1^{\delta_1} \cdot \delta_2^{\delta_2} \cdots \delta_n^{\delta_n}$ is fulfilled for fixed numbers $\delta_i > 0$, where $\delta_1 + \delta_2 + \ldots + \delta_n = 1$ and arbitrary numbers $\alpha_i > 0$, where $\alpha_1 + \alpha_2 + \ldots + \alpha_n = 1$. Indeed, if the function $g(\alpha)$ has the form $g(\alpha) = \alpha_1^{\delta_1} \cdot \alpha_2^{\delta_2} \cdots \alpha_n^{\delta_n}$, then there exists the *Lagrange* function $L = \ln g(\alpha) + \lambda (1 - (\alpha_1 + \alpha_2 + \dots + \alpha_n))$. Consider the equations L'_{α_i} $\left(\frac{\delta_i}{\alpha}\right)$ $\frac{\delta_i}{\alpha_i} - \lambda$) = 0, so $\frac{\delta_i}{\alpha_i} = \lambda$, i = 1, 2, ..., n. From these equations we obtain $\delta_i = \lambda \alpha_i, \ \sum_{i=1}^n \delta_i = \lambda \cdot \sum_{i=1}^n \alpha_i, \text{ and } \lambda = 1.$

Thus, the function $g(\alpha)$ has an extremum at the point with components $\alpha_i = \delta_i$ Since L''_o $\frac{n}{\alpha_i^2} = -\frac{\delta_i}{\alpha_i^2}$ $\frac{\delta_i}{\alpha_i^2} < 0$ and $L''_{\alpha_i \alpha_j} = 0$, (i≠j), we see that the matrix (L''_0) $\mathcal{C}_{\alpha_i \alpha_j}$) of second partial derivatives for the *Lagrange* function is negative definite. This means that the function $g(\alpha)$ takes the maximum at the point with components $\alpha_i = \delta_i$. Hence $g(\alpha) = \alpha_1^{\delta_1} \cdot \alpha_2^{\delta_2} \cdots \alpha_n^{\delta_n} \leq \delta_1^{\delta_1} \cdot \delta_2^{\delta_2} \cdots \delta_n^{\delta_n}$. An equality sign is achieved if and only if $\alpha_i = \delta_i$. Now the inequality yields $(\alpha_1^{\delta_1} \cdot \alpha_2^{\delta_2} \cdots \alpha_n^{\delta_n} \geq q) \Rightarrow (\delta_1^{\delta_1} \cdot \delta_2^{\delta_2} \cdots \delta_n^{\delta_n} \geq q)$. This relationship and Theorem 1 from [3] show that the vector $\alpha (= \delta)$ with components $\alpha_i = \delta_i$ is one of the solutions of (7) corresponding to the solution (6) of the inequality $f(x) \leq \bar{y}$.

2. Suppose that $x^{(1)} = (x_1^{(1)})$ $\binom{1}{1}, x_2^{(1)}$ $x_2^{(1)}, \ldots, x_m^{(1)}$ > 0 is the solution of $f(x) \leq \bar{y}$. The parameters $x_i^{(1)}$ $j^{(1)}$ are received under change of δ_i by $\alpha_i^{(1)}$ $i^{(1)}$ in (6), where $\alpha^{(1)}$ is one of the solutions of the generative inequality (7).

Then, by the results of [3], there exist
$$
x_{m+1}^{(1)} = x_{m+2}^{(1)} = \ldots = x_{m+n-1}^{(1)} = 1
$$
,
$$
x_{m+n}^{(1)} = \prod_{i=1}^{n} \left(\frac{\alpha_i^{(1)} \cdot \bar{y}}{C_i} \right)^{\delta_i \cdot \mu} \ge 1
$$
 such that the vector $\ln(x^{(1)})' = (\ln x_1^{(1)}, \ln x_2^{(1)},$

 \ldots , $\ln x_{m}^{(1)}$ $\binom{1}{m+n}$ is the solution of the equation $A_1 \cdot \ln x' = \ln b(\alpha)$, where the matrix $A_1 = (A.I_n)$ and $b(\alpha) = (\ln(\frac{\alpha_1 \cdot \bar{y}}{C_1}), \ln(\frac{\alpha_2 \cdot \bar{y}}{C_2}, \dots, \ln(\frac{\alpha_n \cdot \bar{y}}{C_n}).$

Similarly, if $x^{(2)} > 0$ is the solution of $f(x) \leq \bar{y}$ with components $x_i^{(2)}$ $_{j}$, $j = 1, 2, \ldots, m$, which are received under substitution of δ_i by $\alpha_i^{(2)}$ $j = 1, 2, \ldots, m$, which are received under substitution or σ_i by α_i in (0), where $\alpha^{(2)}$ is one of the solutions of the generative inequality (7), then there exist $x_{m+1}^{(2)} = x_{m+2}^{(2)} = \ldots = x_{m+n-1}^{(2)} = 1, \ x^{(2)} = \prod_{i=1}^{n} \left(\frac{\alpha_i^{(2)} \cdot \bar{y}}{C_i} \right)$ C_i $\sum \delta_i \cdot \mu$ ≥ 1 such that the vector $\ln(x^{(2)})' = (\ln x_1^{(2)})$ $\binom{2}{1}, \ln x_2^{(2)}$ $x_2^{(2)}, \ldots, \ln x_{m}^{(2)}$ $\binom{2}{m+n}$ is the solution of the equation $A_1 \cdot \ln x' = \ln b(\alpha)$.

Suppose that $\lambda \in [0;1]$. $^{(1)})' + (1 - \lambda) \ln(x^{(2)})' =$ $\lambda A_1 \cdot \ln(x^{(1)})' + (1 - \lambda)A_1 \cdot \ln(x^{(2)})' = \lambda \ln b(\alpha) + (1 - \lambda) \ln b(\alpha) = \ln b(\alpha),$ we see that the vector $\ln(\tilde{x})' = \lambda \ln(x^{(1)})' + (1 - \lambda) \ln(x^{(2)})'$, where $\tilde{x}' = (x^{(1)})' \cdot (x^{(2)})'$ is the solution of the inequality $A_1 \cdot \ln x' = \ln b(\alpha)$.

The elements $\tilde{x}'_j = (x^{(1)}_j)$ $(j^{(1)})^{\prime \lambda} \cdot (x_j^{(2)}$ $j^{(2)'}$ ^{$(1-\lambda)$} are components of the vector \tilde{x}' . Thus, from the formulas for $(x_i^{(1)})$ $\binom{1}{j}^{\prime}$ and $\binom{x^{(2)}_j}{j}$ $j^{(2)}$)', it follows that

$$
\tilde{x}'_j = \tilde{x}_j = (\prod_{i=1}^n \left(\frac{\alpha_i^{(1)} \cdot \bar{y}}{C_i} \right)^{k_{ij}})^\lambda \cdot (\prod_{i=1}^n \left(\frac{\alpha_i^{(2)} \cdot \bar{y}}{C_i} \right)^{k_{ij}})^{1-\lambda}, \quad j = 1, 2, \dots, m,
$$

$$
\tilde{x}'_{m+1} = \tilde{x}'_{m+2} = \dots = \tilde{x}'_{m+n-1} = 1,
$$

$$
\tilde{x}'_{m+n} = (\prod_{i=1}^n \left(\frac{\alpha_i^{(1)} \cdot \bar{y}}{C_i} \right)^{\delta_i \cdot \mu})^\lambda \cdot (\prod_{i=1}^n \left(\frac{\alpha_i^{(2)} \cdot \bar{y}}{C_i} \right)^{\delta_i \cdot \mu})^{1-\lambda} \ge 1.
$$

Here μ is equal to the sum of components of the row matrix $(-a_n \cdot B^{-1}, 1)$, where a_n is the last row of the exponent matrix A. These expressions and the results of [3] allow us to reach the conclusion that the vector \tilde{x}' with components $\tilde{x}_j^{'} = \tilde{x}_j = (x_j^{(1)}$ $(j^{(1)})^{\lambda}\cdot (x_j^{(2)})$ $(j^{(2)})^{1-\lambda}$, $j=1,2,\ldots,m$ is the solution of the inequality $f(x) \leq \bar{y}$. Hence the relationship (8) holds.

Since λ is any number in [0;1], then $\min(x_i^{(1)})$ $j^{(1)}, x_j^{(2)}$ $j^{(2)}$) $\leq \tilde{x}_j \leq \max(x_j^{(1)})$ $j^{(1)}, x_j^{(2)}$ $j^{(2)}),$ i.e. $\tilde{x}_j \in [x_j^{(1)}]$ $\displaystyle{ \mathop{g}_{j}^{(1)},x_{j}^{(2)}}$ $\binom{2}{j}$.

Therefore, the inequality $f(x) \leq \bar{y}$ is fulfilled for all vectors $x = \tilde{x}$ with components $x_j = [x_i^{(1)}]$ $j^{(1)}, x_j^{(2)}$ $\left[\begin{smallmatrix} (2) \ j \end{smallmatrix}\right]$. Moreover, since $y_* = f(x_*)$ and $y_* \leq \bar{y}$, then $\left(x_j \in \left[x_i^{(1)}\right)\right]$ $j^{(1)}, x_j^{(2)}$ $\left\{ \left(\begin{matrix} 2 \\ j \end{matrix} \right], j=1,2,\ldots,m \right\} \Longrightarrow \left(y=\sum_{i=1}^n C_i \prod_{j=1}^m x_j^{a_{ij}} \in [y_*,\overline{y}] \right).$ Thus, we have proved the relationship (9).

References

- [1] A. Yatsko, R. Sudakov. A new iterative method for solution of the dual problem of geometric programming. Scientific Issues, Jan Długosz University in Częstochowa, Mathematics, XII, 115-120, 2007.
- [2] S. Wilks. *Mathematical Statistics*. Wiley, New York 1962.
- [3] A. Yatsko, A. Akhlamov. A new method for setting the acceptable restriction to technical object parameters. Scientific Issues, Catholic University in Ružomberok, Mathematica, II, 101-106, 2009.
- [4] A. Diveyev, N. Severtsev. The Method for Choice of the Optimal Technical Project. Russian Academy of Sciences, Moscow 2003. (In Russian).
- [5] A. Ilichev. *Introduction into System Safety and Efficiency*. Scientific World, Moscow 2003. (In Russian)
- [6] N. Severtsev, T. Shutova. Economic Model of Military Trading in Russia. Peoples Friendship University of Russia, Moscow 2004. (In Russian).