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The main goal of this paper is to find sound pressure distribution radiated by the 
circular piezoelectric disc that vibrates with the finite amplitude. There has been presented 
the pressure distribution close to the radiating surface. Also it is shown the sound pressure 
distribution in the 3D form. The mathematic modeling was carried out on the base of the 
nonlinear acoustic equation with the proper boundary condition. The axial symmetry of 
radiation was assumed. The results have been shown in the form of pressure distribution at 
different distances from the source. The final results will be applied to the designing of the 
underwater sources of finite amplitude. 
 
 

INTRODUCTION 

The higher harmonics are generated as a result of interaction of nonlinear waves 
of high intensity with the environment, in the area directly adjacent to the transmitting 
transducer. Unlike the primary wave source, which is the surface source, the source 
generating the harmonics is the volume source. The higher harmonics are created as a result 
of distortion of the wave, and their amplitude increases as the growth of the distortion.  
         Near the source, within a distance that is equal to few or several wavelengths, the 
distortion of the radiated monochromatic wave is small. In this area, process of generation 
of harmonics begins. Small distortion is justified only when it is taken into account the 
description of the phenomenon of changes of the first or second harmonic.  
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1. GENERATION OF THE HARMONICS IN THE NEARFIELD OF THE SOURCE 

In underwater acoustics, often as a primary source of waves the transducer in form of a 
circular piston is used. The nearfield of this transmitter have a complex spatial structure, 
similar to that shown in Figure 1. 

 
Fig. 1. Pressure distribution in the nearfield of circular piston of radius a=19 mm, f=2.25 MHz,  

po=100 kPa. 
 

Generation of the second harmonic in the vicinity of the source can be traced on the 
basis of the solution of equation of Chocholow-Zabolotska-Kuznetsov (KZK equation) [3] 
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where p’ denotes acoustic pressure, c0 – the speed of sound, ρ0 – density of the undisturbed 
medium, b – attenuation coefficient, B/A – the nonlinearity parameter, x1,y1,z1 - the Lagrange 
coordinate system, τ – time in the Lagrange coordinate system, by means of the method of the 
successive approximations [5] for the boundary conditions described by the relations (2). 
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The increase of the pressure can be written as: 
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Where p(1), P(2) are respectively the first and second approximation of the solution. It can be 
assumed that they can be in the following form:  

 
 

′ଵ = (1)2 ݁ఠఛ                           (4)																																	ଵ′∗݁ିఠఛ
 

′ଶ = (2)2 ݁ଶఠఛ   ଶ′∗݁ିଶఠఛ
 

In these equations, ଵ′  and  ଶ′  are the pressure amplitude of the primary wave and the second 
harmonic. The asterisk indicates the complex conjugate quantities. After substituting relations 
(4) to KZK equation (1), we obtain the following set of equations:  
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where:  
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 ଶ denote attenuation coefficients of the wave of infinitesimal amplitude and angularߙ,ଵߙ
frequency, respectively ߱  and 2߱. In order to simplify the form of equations (5) it can be 
made the following substitution: 
 
′ଵ ൌ   ሻݖଵߙଵሺെ
 
′ଶ ൌ ሻ          (6)ݖଶߙଶሺെ
           
 
The system of equations (5) then becomes:  
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where:  
 
ߙ ൌ ଶߙ െ  ଵߙ2
 
 The solution of the system of equations (7) can be found by using the integral Hankel’s 
transformation. The assumed uniform distribution of the amplitude of the first harmonic on 
the surface of the transducer, the first approximation of the solution has the form:  
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Where F () is the hypergeometric function. Equation (8) for r = 0 describes the  
changes of the amplitude of the first harmonic in the beam axis:  
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and the modulus of the amplitude as a function of distance from the source is changed 
according to the relation:  
 

,ଵሺ0| |ሻݖ ൌ 2 ቚsin ቀ
మ

ସ௭
ቁቚ																																																																																																												(10)  

             
                    
 The relations (8), (9) and (10) describe the first harmonic field distribution using quasi-
optical approximation. It is correct for the distance from the source that meets the condition 
(2). An example of the pressure distribution of the first harmonic along the beam axis is 
shown in Figure 2. The solid line indicates the distribution based on analytical solution for the 
wave of infinitely small amplitude, and the dotted line – the distribution obtained using quasi-
optical approximation. Calculations were performed for a transmitter having a radius of 25 =ߙ 
mm radiating to water the wave of frequency f = 323 kHz,  ൎ	95 kPa. Numerical model is 
proper [5] when the following condition is fulfilled: 
 

ݖ  2ሺ݇ܽሻିଶ/ଷ     (11) 
 
In this case it is for  z > 0,19 m.  
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Fig. 2. The module of the first harmonic changes as a function of distance from the source: (-------------

------) linear approximation  (- - - - - - - ) quasi-optical approximation [ based on [5]].  
 

 The solution of system of equations (7) describing the change of the second harmonic 
can be represented as:  
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After substituting to (12) integral expressions describing the distribution of the first harmonic 
(8), searching for the solution along the beam axis (r = 0), after a series of transformations it 
can be obtained: 
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For small distances from the transmitter the formula (13) can be simplified to the form:  
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which  using the formula (9) can be written as:  
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Determined on the basis of the relation (15) changes in the amplitude of the second harmonic 
as a function of the distance to the source, which the first harmonic is shown in Fig. 2., are 
shown in Fig. 3. For comparison is shown a solution indicated by a dotted line for a plane 
wave approximation.  

 
Fig. 3. The changes of the module of the second harmonic as a function of distance from the source: 
solid line: quasi-optical approximation, dotted line: plane wave approximation [based on [5]].  
 
 
 Presented above  the analytical solution of the problem of generating harmonics in the 
field of the sources radiating wave of finite amplitude describes the experimentally observed 
spatial fluctuations of the amplitude of the second harmonic near the radiating surface. 
 
 
2. THE SOLUTION OF EQUATION OF NONLINEAR ACOUSTICS BY THE MEANS OF 

FINITE ELEMENTS 
 

 The research of the field distribution near the vibration surface cause quite a lot of 
problems. A widely used method of solving the KZK equation in domain of frequency is very 
effective. However, it does not give information about the course of phenomenon  in the area 
close to the source. For example for the source of waves, the circular piston-like transducer is 
used in  experimental research of the radius 23 = ߙ mm vibrating with a frequency of f = 1 
MHz at    ൎ157 kPa, it describes correctly, according to the condition (2), wave 
propagation over the distance of more than 90 mm from the radiating surface . 
 The above discussed method of successive approximations is effective only in case of 
weak distortion, ie where ܴ݁	< 1 or at a higher amplitude of the radiated wave - in the initial 
part of the rise of non-linear distortion.  
 Seeking opportunities of obtaining data of field distributon in close proximity to the 
source of the wave of high intensity was one of the main reasons for the development of a 
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numerical model based on the full form of nonlinear acoustics equation [2]. For the numerical 
solution of the equation the finite element method is used. 
 Using this model, the studies were performed for the initial conditions adequate to the 
conditions of experimental studies, it means it was assumed that the circular transmitter with a 
radius of 23 mm (piston) vibrate at a frequency of 1 MHz. The research focused on the effect 
of pressure distribution near the surface radiating in the spatial field distribution obtained as a 
result of modeling the phenomenon. Different cases of the boundary conditions were 
considered, a uniform pressure distribution near the transmitter and distributions 
approximating the real distribution, as shown in Fig. 4. 

Fig. 4. The distribution of the pressure measured at a distance of 1 mm from the surface of the 
transducer with a radius of 23 =ߙ mm vibrating at frequency  1 MHz. 

 
 Influence of the pressure distribution near the source on the spatial distribution of the 
field was examined on the example of two curves, approximating the real distribution, as 
shown in Figure 5.  

Fig. 5. The boundary conditions that were applied in the calculation 
 

The pressure distribution in the beam cross section at a small distance from the 
transducer, calculated for both the approximating curves illustrate graphs in Figures 6 and 7. 
It is shown a pressure change as a function of the distance from the beam axis in planes 
perpendicular to the axis. The results of the studies indicate a large impact of the boundary 
conditions on the designated numerically the field distribution. They confirm the need for 
mapping as accurately as possible the real conditions in numerical models. 
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Fig. 6. The transverse distribution of the pressure calculated for the boundary conditions described by 
the curve 1 at varying distances from the transmitter 1 - 28.9 mm; 2 - 30.3 mm; 3-31,7 mm; 4 - 33.1 

mm, 5 - 34,5 mm [3].  

 
Fig. 7. The transverse distribution of the pressure calculated for the boundary conditions described by 
the curve 2 at different distances from the transmitter: 1 - 13.0 mm; 2 - 19.9 mm; 3 - 26.8 mm; 4 - 32.4 

mm; 5 - 39.4 mm [3]. 
 

 A model based on the solution of non-linear acoustics equation in full form was also 
used to perform studies of time and distance changes of the pressure distribution in the beam 
cross-section. The differences in the temporary pressure distribution within the beam are 
shown in Figure 8. All the pressure distributions that are shown in this Figure were 
determined for the same time but at different distances from the source of the wave. Upper 
and middle graphs show the amplitude distribution of pressure in two planes perpendicular to 
the beam axis, which distance is equal to the multiple of the wavelength. And the lower figure 
shows the pressure distribution in a plane parallel to the previous, where the distance to the 
others is not equal to a multiple of the wavelength. 
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Fig. 8.  The temporary pressure distribution in three planes perpendicular to the axis of a beam  
of a circular transducer at the same time.  

 
In  Fig. 9.  it can be seen the temporary pressure distributions at the same cross section 

of the beam at different times. The time differences between the presented distributions are 
included in one period of vibration. 

Presented data show how diverse the pressure distributions within the beam at a 
predetermined time depending on the distance from the source, or in a fixed beam cross-
section depending on the phase.  
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Fig. 9. The temporary pressure distribution on the same plane perpendicular to the beam axis of the 
circular transducer at different times.  

 
Presented data confirm the value of the model of the wave propagation of high intensity 

developed and based on the solution of full nonlinear acoustics equations by the method of the 
finite elements as a tool for obtaining valuable information about the course of phenomenon  
in the area directly adjacent to the radiating surface, it means in the area, for which the results 
using other commonly used models cannot be obtained. 

This model does not have limitations due to the boundary conditions, so it can be used 
for prediction of field distribution of real sources of waves of high intensity.  

The most important disadvantage of this model is the calculation time, much longer 
than, for example by using the Bergen’s code model.  
 
 

3. THE EFFECT OF PRESSURE DISTRIBUTION NEAR THE VIBRATING SURFACE 
ON THE FIELD DISTRIBUTION  

 
 The pressure distribution near the surface of the radiating piston planar source in not 
always uniform. The impact of this factor on the spatial distribution of the fields mentioned in 
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the previous section, is illustrated in Figure 10 in which are compared changes in pressure 
distribution in the beam axis of the first three harmonic waves radiated assuming various 
forms of primary wave pressure distribution near the radiating surface. 

 
Fig. 10. The pressure distribution of the first three harmonics of pressure as a function of normalized 

relative Rayleigh’s  length: (U) - a circular transducer with uniform distribution, (G) - a circular 
transducer with Gauss’ distribution, (P) - the source of a plane wave [1 ]. 

 
 These distributions are determined theoretically in paper [1] for three different pressure 
distributions near the radiating surface. Other parameters of the source and the medium were 
the same in all cases. The calculations were made for the source of uniform distribution (U), a 
source with Gauss’ distribution (G) and the plane source (P). The graphs show the amplitude 
of the pressure as a function of distance normalized by Rayleigh’s wave, determined for the 
primary wave. The distance of the loss of continuity of the plane wave ݖே ൎ 0.736	ܴ. The 
curves illustrated the individual harmonic distributions approach each other in the area in 
which the distance from the source normalized  by ܴ, is close to the unity. 
 In the case of real sources of waves assumption a priori of the uniform distribution of 
vibration on the surface of the circular transducer, particularly at high values of the ratio ݇ܽ, 
is not always correct. Figures 11 and 12 show the difference in pressure distributions 
determined theoretically for the source used in the measurement of the frequency of 1 MHz 
and a radius 23 =ߙ mm, assuming that the pressure distribution near the radiating surface is 
uniform or approximated by the curve: 
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Fig. 11. The changes in the first, second, third and fourth harmonic of the pressure in the beam axis 

determined for uniform pressure distribution near the source. 
 

 
Fig. 12. The changes in the first,  second, third and fourth harmonic pressure in the beam axis 

determined for the pressure distribution that approximates the real distribution close to the source. 
 
 The amplitude changes of the experimentally determined harmonics in the beam axis in 
comparision to the numerical studies results are shown in Figure 13. These results confirm the 
need of consideration the real distribution of the pressure of the radiating wave close to the 
source in the theoretical research, in the whole area of rising the deformation of the non-linear 
wave. 
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Fig. 13. The distribution of the pressure amplitudes of the first four harmonics in the beam axis 
experimentally determined: (--------------) and numerically based on the KZK equation with the 

boundary condition (16): (- - - - - - -).  
 
The effect of the amplitude distribution of the radiated wave near the source on the pressure 
field within the beam is also seen in cross-sections in planes perpendicular to the beam axis. 
For example, the changes in the amplitudes of the first three harmonics of the pressure in the 
beam cross-section in characteristic areas of the field are shown in Figure 14. 
 

 
Fig. 14. The amplitude changes in the first three harmonics of the wave radiated by a plane source 
with a distribution (16) in the beam cross-section at a distance corresponding to the last minimum 

(left) and the last maximum (right) in the pressure distribution of the first harmonic in the beam axis. 
 
 

CONCLUSIONS 
 
 The paper presents results of numerical investigations of pressure distribution in the 
nearfield of sources radiated waves of finite amplitude. The model elaborated for this purpose 
bases on equation of nonlinear acoustics in full form. It allows do predict the pressure 
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distribution beginning from the plane located directly to the radiating surface and does not 
have the restrictions on the boundary conditions. Therefore it is very useful in investigation 
natural sources [4]. Another models, especially the widely used model based on solving the 
KZK equation does not give information about the distribution of the acoustic field close to 
the source of waves. 

Numerical results were compared to experimental ones and shown a good agreement. 
Presented data indicate the importance of impact of pressure distribution at the radiating 

surface on the acoustical field of the source. 
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