PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Backstepping Control of the Vehicle Suspension Model Equipped With the Magnetorheological Fluid Damper

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Backstepping is a method designed to control nonlinear systems. Formulated for the first time and described by Petar Kokotovic around 1990. The main purpose of backstepping is stabilisation of each subsystem’s structure; the function needs to be of an adequate class. The present task consists in minimising the vehicle body displacement from the position of equilibrium after it has been knocked out of it with the force exerted on the wheel, which has the purpose of simulating the wheel encountering an obstacle. The model depicts ¼ of the vehicle suspension with a conical spring or classical spring, and the damper with magnetorheological fluid which modifies damping of the suspension. The Mathcad programme facilitated the calculations, the model was designed using the Matlab – Simulink environment. Simulations were carried out on the model with the linear characteristics of a spring, as well as on the model with the implemented nonlinear spring. All the investigated cases were accompanied by the control tests that comprised building the model without control, i.e. with the constant value of damping
Rocznik
Strony
121--133
Opis fizyczny
Bibliogr. 7 poz., tab., wykr.
Twórcy
autor
  • Warsaw University of Technology, Faculty of Automotive and Construction Machinery Engineering
  • Warsaw University of Technology, Faculty of Automotive and Construction Machinery Engineering
Bibliografia
  • 1. Benaoumeur, I., Laredj, B., Reda, H. E. A., and Zoubir, A.-f. (2016). Backstepping approach for autonomous mobile robot trajectory tracking. Indonesian Journal of Electrical Engineering and Computer Science, 2(3):478–485.
  • 2. Chen, C.-X., Xie, Y.-X., and Lan, Y.-H. (2015). Backstepping control of speed sensorless permanent magnet synchronous motor based on slide model observer. International Journal of Automation and Computing, 12(2):149–155.
  • 3. Fossen, T. I. and Strand, J. P. (1999). Tutorial on nonlinear backstepping: Applications to ship control. Modeling, identification and control, 20(2):83.
  • 4. Knap, L., Grzesikiewicz, W., and Makowski, M. (2010). Modeling and experimental studies of controled torsional magneto-rheological damper. Machine Dynamics Research, 34(2):70–77.
  • 5. Liu, J., Eker, J., Janneck, J. W., Liu, X., and Lee, E. A. (2004). Actor-oriented control system design: A responsible framework perspective. IEEE Transactions on Control Systems Technology, 12(2):250–262.
  • 6. Skjetne, R. and Fossen, T. I. (2004). On integral control in backstepping: Analysis of different techniques. In American Control Conference, 2004. Proceedings of the 2004, volume 2, pages 1899–1904. IEEE.
  • 7. Tanner, H. G. and Kyriakopoulos, K. J. (2002). Discontinuous backstepping for stabilization of nonholonomic mobile robots. In Robotics and Automation, 2002. Proceedings. ICRA’02. IEEE International Conference on, volume 4, pages 3948–3953. IEEE.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-997bc200-0088-43d4-a3fe-e278e4363553
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.