Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Systems based on physical sorption are an attractive solution for CO2 capture from flue gases, biogas upgrading or gas storage. Besides the sorbent choice, one of the most important factors related to the design of such systems is proper heat management. Commonly used sorbents typically have low thermal conductivity. Nevertheless, catalyst particles characterized by high conductivity are inherently present in adsorptive (hybrid) reactors. Thus, appropriate structuring of hybrid beds can be used for controlling temperature profiles and improving the bed performance. In this study, the behaviour of a nonadiabatic adsorptive reactor described by a two-dimensional model was analysed for the adsorption step. The effect on the CO2 adsorption performance of different spatial distributions of functionalities in the bed was investigated. The optimality problem for nonuniform radial distribution of sorbent and catalyst in the bed was solved, indicating that such a configuration is a potentially important direction for structuring hybrid beds. Results demonstrate that the optimal configuration of radially distributed functionalities significantly increases the amount of CO2 absorbed under identical boundary and initial conditions for the bed. It appears that precise control of the heat generated and removed from the bed is achievable. Such control could be advantageous for the regeneration phase.
Rocznik
Tom
Strony
art. no. e76
Opis fizyczny
Bibliogr. 36 poz., rys., wykr.
Twórcy
autor
- Università degli Studi del Sannio, Department of Engineering, Piazza Roma 21, 82100 Benevento, Italy
autor
- Università degli Studi del Sannio, Department of Engineering, Piazza Roma 21, 82100 Benevento, Italy
autor
- Università degli Studi del Sannio, Department of Engineering, Piazza Roma 21, 82100 Benevento, Italy
autor
- Cracow University of Technology, Faculty of Chemical Engineering and Technology, ul. Warszawska 24, 31-155 Kraków, Poland
Bibliografia
- 1. Abd A.A., Othman M.R., Helwani Z., Kim J., 2024. An overview of biogas upgrading via pressure swing adsorption: navigating through bibliometric insights towards a conceptual framework and future research pathways. Energy Convers. Manage., 306, 118268. DOI: 10.1016/j.enconman.2024.118268.
- 2. Ben-Mansour R., Abuelyamen A., Qasem N.A.A., 2020. Thermal design and management towards high capacity CO2 adsorption systems. Energy Convers. Manage., 212, 112796. DOI: 10.1016/j.enconman.2020.112796.
- 3. Bremer J., Rätze K.H.G., Sundmacher K., 2017. CO2 methanation: Optimal start-up control of a fixed-bed reactor for power-to-gas applications. AIChE J., 63, 23–31. DOI: 10.1002/aic.15496.
- 4. Chauhan P.R., Kaushik S.C., Tyagi S.K., 2022. A review on thermal performance enhancement of green cooling system using different adsorbent/refrigerant pairs. Energy Convers. Manage.: X, 14, 100225. DOI: 10.1016/j.ecmx.2022.100225.
- 5. Demir H., Mobedi M., Ülkü S., 2010. The use of metal piece additives to enhance heat transfer rate through an uncon-solidated adsorbent bed. Int. J. Refrig., 33, 714–720. DOI:
- 6. 10.1016/j.ijrefrig.2009.12.032.
- 7. Díaz-Heras M., Belmonte J.F., Almendros-Ibáñez J.A., 2020. Effective thermal conductivities in packed beds: Review of correlations and its influence on system performance. Appl. Therm. Eng., 171, 115048. DOI: 10.1016/j.applthermaleng. 2020.115048.
- 8. Dixon A.G., 2012. Fixed bed catalytic reactor modelling – the radial heat transfer problem. Can. J. Chem. Eng., 90, 507–527. DOI: 10.1002/cjce.21630.
- 9. Dixon A.G., Paterson W.R., Cresswell D.L., 1978. Heat transfer in packed beds of low tube/particle diameter ratio. In: Weekman Jr. V.W., Luss D. (Eds.), Chemical reaction Engineering – Houston. ACS Symposium Series, 65, 238–253. DOI: 10.1021/bk-1978-0065.ch020.
- 10. Do D.D., 1998. Adsorption analysis: Equilibria and kinetics. Imperial College Press, London. DOI: 10.1142/p111.
- 11. Eppinger T., Jurtz N., Kraume M., 2021. Influence of macroscopi wall structures on the fluid flow and heat transfer in fixed bed reactors with small tube to particle diameter ratio. Processes, 9, 689. DOI: 10.3390/pr9040689.
- 12. Glueckauf E., Coates J.I., 1947. 241. Theory of chromatography. Part IV. The influence of incomplete equilibrium on the front boundary of chromatograms and on the effectiveness of separation. J. Chem. Soc., 1315–1321. DOI: 10.1039/JR9470001315.
- 13. Grande C. A., Kaiser A., Andreassen K.A., 2023. Methane storage in metal-organic framework HKUST-1 with enhanced heat management using 3D printed metal lattices. Chem. Eng. Res. Des., 192, 362–370. DOI: 10.1016/j.cherd.2023.03.003.
- 14. Gunia M., Ciećko J., Bizon K., 2023. Assessment of bed macrostructuring and thermal wave impact on carbon dioxide adsorption efficiency in a hybrid fixed-bed reactor. Chem. Process Eng., 44, e13. DOI: 10.24425/cpe.2023.144699.
- 15. Jarczewski S., Barańska K., Drozdek M., Michalik M., Bizon K., Kuśtrowski P., 2022. Energy-balanced and effective adsorption-catalytic multilayer bed system for removal of volatile organic compounds. Chem. Eng. J., 431, 133388. DOI: 10.1016/j.cej.2021.133388.
- 16. Jorge L.M.M., Jorge R.M.M., Giudici R., 2010. Experimental and numerical investigation of dynamic heat transfer parameters in packed bed. Heat Mass Transfer, 46, 1355–1365. DOI: 10.1007/s00231-010-0659-6.
- 17. Kammerer S., Borho I., Jung J., Schmidt M.S., 2023. Review: CO2 capturing methods of the last two decades. Int. J. Environ. Sci. Technol., 20, 8087–8104. DOI: 10.1007/s13762-022-04680-0.
- 18. Kunii D., Smith J.M., 1960. Heat transfer characteristics of porous rocks. AIChE J., 6, 71–78. DOI: 10.1002/aic.690060115.
- 19. Kwan T.H., Yao Q., 2022. Numerical analysis on the geometrical design of liquid cooling based carbon capture by adsorption for higher thermal efficiency. Int. Commun. Heat Mass Transfer, 139, 106459. DOI: 10.1016/j.icheatmasstransfer.2022.106459.
- 20. Leonzio G., Shah N., 2024. Recent advancements and challenges in carbon capture, utilization and storage. Curr. Opin. Green Sustainable Chem., 46, 100895. DOI: 10.1016/j.cogsc.2024.100895.
- 21. Lian Y., Deng S., Li S., Guo Z., Zhao L., Yuan X., 2019. Numerical analysis on CO2 capture process of temperature swing adsorption (TSA): optimization of reactor geometry. Int. J. Greenhouse Gas Control, 85, 187–198. DOI: 10.1016/j.ijggc.2019.03.029.
- 22. Lin X., Li X., Liu H., Boczkaj G., Cao Y., Wang C., 2024. A review on carbon storage via mineral carbonation: bibliometric analysis, research advances, challenges, and perspectives. Sep. Purif. Technol., 338, 126558. DOI: 10.1016/j.seppur.2024.126558.
- 23. Martins V.F.D., Miguel C.V., Gonçalves J.C., Rodrigues A.E. Madeira L.M., 2022. Modeling of a cyclic sorption–desorption unit for continuous high temperature CO2 capture from flue gas. Chem. Eng. J., 434, 134704. DOI: 10.1016/j.cej.2022.134704.
- 24. McLaughlin H., Littlefield A.A., Menefee M., Kinzer A., Hull T., Sovacool B.K., Bazalian M.D., Kim J., Griffiths S., 2023. Carbon capture utilization and storage in review: sociotechnical implications for a carbon reliant world. Renew. Sustain. Energy Rev., 177, 113215. DOI: 10.1016/j.rser.2023.113215.
- 25. Miguel C.V., Soria M.A., Mendes A., Madeira L.M., 2017. A sorptive reactor for CO2 capture and conversion to renewable methane. Chem. Eng. J., 332, 590–602. DOI: 10.1016/j.cej.2017.04.024.
- 26. Poling B.E., Prausnitz J.M., O’Connell J.P., 2001. Properties of gases and liquids. 5th edition, McGraw-Hill Education, New York.
- 27. Saha B.B., Uddin K., Pal A., Thu K., 2019. Emerging sorption pairs for heat pump applications: an overview. JMST Adv., 1, 161–180. DOI: 10.1007/s42791-019-0010-4.
- 28. Stegehake C., Riese J., Grünewald M., 2018. Aktueller Stand zur Modellierung von Festbettreaktoren und Möglichkeiten zur experimentellen Validierung. Chem. Ing. Tech., 90, 1739–1758. DOI: 10.1002/cite.201800130.
- 29. Szyc M., Nowak W., 2014. Operation of an adsorption chiller in different cycle time conditions. Chem. Process Eng., 35, 109–119. DOI: 10.2478/cpe-2014-0008.
- 30. Tsotsas E., Schlünder E.-U., 1990. Heat transfer in packed beds with fluid flow: remarks on the meaning and the calculation of a heat transfer coefficient at the wall. Chem. Eng. Sci., 45, 819–837. DOI: 10.1016/0009-2509(90)85005-X.
- 31. van Antwerpen W., du Toit C.G., Rousseau P.G., 2010. A review of correlations to model the packing structure and effective thermal conductivity in packed beds of mono-sized spherical particles. Nucl. Eng. Des., 240, 1803–1818. DOI: 10.1016/j.nucengdes.2010.03.009.
- 32. Wakao N., Funazkri T., 1978. Effect of fluid dispersion coefficients on particle-to-fluid mass transfer coefficients in packed beds: correlation of sherwood numbers. Chem. Eng. Sci., 33, 1375–1384. DOI: 10.1016/0009-2509(78)85120-3.
- 33. Wang Y., LeVan M.D., 2009. Adsorption equilibrium of carbon dioxide and water vapor on zeolites 5A and 13X and silica gel: pure components. J. Chem. Eng. Data, 54, 2839–2844. DOI: 10.1021/je800900a.
- 34. Weinstein M.J., Rao A.V., 2017. Algorithm 984: ADiGator, a tool-box for the algorithmic differentiation of mathematical functions in MATLAB using source transformation via operator overloading. ACM Trans. Math. Softw., 44, 21. DOI: 10.1145/3104990.
- 35. Yagi S., Kunii D., 1960. Studies on heat transfer near wall surface in packed beds. AIChE J., 6, 97–104. DOI: 10.1002/aic.690060119.
- 36. Yagi S., Kunii D., Wakao N., 1960. Studies on axial effective thermal conductivities in packed beds. AIChE J., 6, 543–546. DOI: 10.1002/aic.690060407.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-997ad172-cb6a-43da-8410-d4eda77a61d3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.