PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Civil Engineering – Ongoing Technical Research. Part 2

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Alkali-silica reaction (ASR) is a reaction between amorphous or poorly crystallized siliceous phase, present in aggregates, and sodium and potassium hydroxides in the pore solution of concrete. Chemical admixtures such as lithium compounds are known to have high potential of inhibiting ASR. The aim of this study was to determine the effect of lithium nitrate on ASR in mortars containing high reactive opal aggregate over a long period of time. Mortar bar expansion tests were performed and microstructures of mortar bars were observed by scanning electron microscopy coupled with an energy dispersive X-ray microanalyser. Results from this study showed that effectiveness of lithium nitrate in mitigating ASR was limited over a long period of time. A larger amount of ASR gel which was formed in the presence of lithium nitrate indicated that the deterioration processes intensify within longer periods of time, which so far has not been observed in literature. Microscopic observation confirmed the presence of alkali-silica gel and delayed ettringite in mortars with lithium nitrate.
Słowa kluczowe
Rocznik
Strony
761--763
Opis fizyczny
Bibliogr. 21 poz., fot.
Twórcy
autor
  • Building Research Institute (ITB), 1 Filtrowa St., 00-611 Warsaw
autor
  • Katholieke Universiteit Leuven, Oude Markt 13, 3000 Leuven, Belgium
Bibliografia
  • [1] L. Czarnecki and D. Van Gemert, “Civil Engineering – Ongoing Technical Research. Part I”, Bull. Pol. Ac.: Tech. 64 (4), 661‒663 (2016).
  • [2] L. Czarnecki and D. Van Gemert, “Scientific basis and rules of thumb in civil engineering: Conflict or harmony?”, Bull. Pol. Ac.: Tech. 64 (4), 665‒673 (2016).
  • [3] L. Czarnecki, “Material model and revealing the truth”. Bull. Pol. Ac.: Tech. 63 (1), 7–14 (2015).
  • [4] E. Szewczak and A. Piekarczuk, “Performance evaluation of the construction products as a research challenge. Small error – big difference in assessment?”, Bull. Pol. Ac.: Tech. 64 (4), 675‒686 (2016).
  • [5] L. Brunarski and M. Dohojda, “An approach to in-situ compressive strength of concrete”, Bull. Pol. Ac.: Tech. 64 (4), 687‒695 (2016).
  • [6] R. Geryło, “Energy-related conditions and envelope properties for sustainable buildings”, Bull. Pol. Ac.: Tech. 64 (4), 697‒707 (2016).
  • [7] J. Fangrat, “Combustibility of building products versus fire safety”. Bull. Pol. Ac.: Tech. 64 (4), 709‒717 (2016).
  • [8] W. Węgrzyński and P. Sulik, “The philosophy of fire safety engineering in the shaping of civil engineering development”, Bull. Pol. Ac.: Tech. 64 (4), 719‒730 (2016).
  • [9] J. Wawrzeńczyk, T. Juszczak, and A. Molendowska, “Determining equivalent performance for frost durability of concrete containing different amounts of ground granulated blast furnace slag”, Bull. Pol. Ac.: Tech. 64 (4), 731‒737 (2016).
  • [10] P. Obara and W. Gilewski, “Dynamic stability of moderately thick beams and frames with the use of harmonic balance and perturbation methods”, Bull. Pol. Ac.: Tech. 64 (4), 739‒750 (2016).
  • [11] M. Kadela, “Model of multiple-layer pavement structure-subsoil”, Bull. Pol. Ac.: Tech. 64 (4), 751‒762 (2016).
  • [12] M. Iwański, P. Buczyński, and G. Mazurek, “The use of gabbro dust in the cold recycling of asphalt paving mixes with foamed bitumen”, Bull. Pol. Ac.: Tech. 64 (4), 763‒773 (2016).
  • [13] T. Tracz, “Open porosity of cement pastes and their gas permeability”, Bull. Pol. Ac.: Tech. 64 (4), 775‒783 (2016).
  • [14] W. Ru, L. Jian, Z. Tao, and L. Czarnecki, “Chemical interaction between polymer and cement in polymer-cement concrete”, Bull. Pol. Ac.: Tech. 64 (4), 785‒792 (2016).
  • [15] L. Czarnecki and D. Van Gemert, “Innovation in construction materials engineering versus sustainable development”, Bull. Pol. Ac.: Tech. 65 (6), 765‒772 (2017).
  • [16] J. Zapała-Sławeta and Z. Owsiak, “Effect of lithium nitrate on the reaction between opal aggregate and sodium and potassium hydroxides in concrete over a long period of time”, Bull. Pol. Ac.: Tech. 65 (6), 772‒778 (2017).
  • [17] A. Chomicz-Kowalska, “Laboratory testing of low temperature asphalt concrete produced in foamed bitumen technology with fiber reinforcement”, Bull. Pol. Ac.: Tech. 65 (6), 779‒790 (2017).
  • [18] A. Piekarczuk, “Test-supported numerical analysis for evaluation of the load capacity of thin-walled corrugated profiles”, Bull. Pol. Ac.: Tech. 65 (6), 791‒798 (2017).
  • [19] W. Buczkowski, A. Szymczak-Graczyk, and Z. Walczak, “Experimental validation of numerical static calculations for a monolithic rectangular tank with walls of trapezoidal cross-section”, Bull. Pol. Ac.: Tech. 65 (6), 799‒804 (2017).
  • [20] M. Rucka, W. Witkowski, J. Chróścielewski, S. Burzyński, and K. Wilde, “A novel formulation of 3D spectral element for wave propagation in reinforced concrete”, Bull. Pol. Ac.: Tech. 65 (6), 805‒814 (2017).
  • [21] M. Basińska, “The use of multi-criteria optimization to choose solutions for energy-efficient buildings”, Bull. Pol. Ac.: Tech. 65 (6), 815‒826 (2017).
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9975717c-7655-4ea4-aa34-fcbd1edcba60
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.