PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A short stem with metaphyseal anchorage reveals a more physiological strain pattern compared to a standard stem : an experimental study in cadavaric bone

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The proposed advantages of short stem hip arthroplasties are bone preserving strategies and less soft tissue damage. Bone preserving strategies do not only include a more proximal resection of the femoral neck, but especially for short stem hip arthroplasties with predominantly metaphyseal fixation a presumed more physiologic load transfer and thus a reduction of stress-shielding. However, the hypothesized metaphyseal anchorage associated with the aforementioned benefits still needs to be verified. Unfortunately, mid- to long-term clinical studies are missing. Methods: Therefore, the METHA short stem as a short stem with proposed metaphyseal anchorage and the Bicontact® standard stem were tested biomechanically in three pairs of cadaveric femora while strain gauges monitored their corresponding strain patterns. Results: For the METHA stem, the strains in all tested locations including the region of the calcar were similar to conditions of cadaver without implanted stem. The Bicontact stem showed approximately half of strain of the non-implanted cadaveric femura with slightly increasing strain from proximal to distal. Conclusions: Summarizing, the current study revealed primary metaphyseal anchorage of the METHA short stem and a metaphyseal-diaphyseal anchorage of the Bicontact stem.
Rocznik
Strony
153--159
Opis fizyczny
Bibliogr. 25 poz., rys., tab.
Twórcy
  • Hannover Medical School, Department of Orthopaedic Surgery, Hannover, Germany
  • Hannover Medical School, Department of Orthopaedic Surgery, Hannover, Germany
autor
  • Biomechanics and Biomaterials Laboratory, Hannover Medical School, Hannover, Germany
  • Hannover Medical School, Department of Orthopaedic Surgery, Hannover, Germany
  • Hannover Medical School, Department of Orthopaedic Surgery, Hannover, Germany
  • Hannover Medical School, Department of Orthopaedic Surgery, Hannover, Germany
  • Diakovere Friederikenstift Hannover, Hannover, Germany
Bibliografia
  • [1] AAMODT A., LUND-LARSEN J., EINE J., ANDERSEN E., BENUM P., HUSBY O.S., Changes in proximal femoral strain after insertion of uncemented standard and customised femoral stems. An experimental study in human femora, J. Bone Joint Surg. Br., 2001, 83, 921–929.
  • [2] ATESCHRANG A., WEISE K., WELLER S., STOCKLE U., DE ZWART P., OCHS B.G., Long-term results using the straight tapered femoral cementless hip stem in total hip arthroplasty: a minimum of twenty-year follow-up, J. Arthroplasty, 2014, 29, 1559–1565.
  • [3] BIEGER R., IGNATIUS A., DECKING R., CLAES L., REICHEL H., DURSELEN L., Primary stability and strain distribution of cementless hip stems as a function of implant design, Clin. Biomech. (Bristol, Avon), 2012, 27, 158–164.
  • [4] CRISTOFOLINI L., CONTI G., JUSZCZYK M., CREMONINI S., VAN SINT J.S., VICECONTI M., Structural behaviour and strain distribution of the long bones of the human lower limbs, J. Biomech., 2010, 43, 826–835.
  • [5] CRISTOFOLINI L., JUSZCZYK M., TADDEI F., FIELD R.E., RUSHTON N., VICECONTI M., Stress shielding and stress concentration of contemporary epiphyseal hip prostheses, Proc. Inst. Mech. Eng. H., 2009, 223, 27–44.
  • [6] DECKING R., PUHL W., SIMON U., CLAES L.E., Changes in strain distribution of loaded proximal femora caused by different types of cementless femoral stems, Clin. Biomech. (Bristol, Avon), 2006, 21, 495–501.
  • [7] FALEZ F., CASELLA F., PAPALIA M., Current concepts, classification, and results in short stem hip arthroplasty, Orthopedics, 2015, 38, S6–13.
  • [8] FLOERKEMEIER T., BUDDE S., HURSCHLER C., LEWINSKI G., WINDHAGEN H., GRONEWOLD J., Influence of size and CCD-angle of a short stem hip arthroplasty on strain patterns of the proximal femur – an experimental study, Acta Bioeng Biomech., 2017, 19, 141–149.
  • [9] FLOERKEMEIER T., GRONEWOLD J., BERNER S., OLENDER G., HURSCHLER C., WINDHAGEN H., VON LEWINSKI G., The influence of resection height on proximal femoral strain patterns after Metha short stem hip arthroplasty: an experimental study on composite femora, Int. Orthop., 2013, 37, 369–377.
  • [10] FOTTNER A., SCHMID M., BIRKENMAIER C., MAZOOCHIAN F., PLITZ W., VOLKMAR J., Biomechanical evaluation of two types of short-stemmed hip prostheses compared to the trust plate prosthesis by three-dimensional measurement of micromotions, Clin. Biomech. (Bristol, Avon), 2009, 24, 429–434.
  • [11] GANAPATHI M., EVANS S., ROBERTS P., Strain pattern following surface replacement of the hip, Proc. Inst. Mech. Eng. H., 2008, 222, 13, 10.1243/09544119JEIM322.
  • [12] GRONEWOLD J., BERNER S., OLENDER G., HURSCHLER C., WINDHAGEN H., VON LEWINSKI G., FLOERKEMEIER T., Changes in strain patterns after implantation of a short stem with metaphyseal anchorage compared to a standard stem: an experimental study in synthetic bone, Orthop. Rev. (Pavia), 2014, 6, 5211, 10.4081/or.2014.5211.
  • [13] HERRERA A., PANISELLO J.J., IBARZ E., CEGONINO J., PUERTOLAS J.A., GRACIA L., Comparison between DEXA and finite element studies in the long-term bone remodeling of an anatomical femoral stem, J. Biomech. Eng., 2009, 13–18.
  • [14] KIM Y.H., KIM J.S., CHO S.H., Strain distribution in the proximal human femur. An in vitro comparison in the intact femur and after insertion of reference and experimental femoral stems, J. Bone Joint Surg. Br., 2001, 83, 295–301.
  • [15] LERCH M., VON DER HAAR-TRAN A., WINDHAGEN H., BEHRENS B.A., WEFSTAEDT P., STUKENBORG-COLSMAN C.M., Bone remodelling around the Metha short stem in total hip arthroplasty: a prospective dual-energy X-ray absorptiometry study, Int. Orthop., 2012, 36, 533–538.
  • [16] LIANG H.D., YANG W.Y., PAN J.K., HUANG H.T., LUO M.H., ZENG L.F., LIU J., Are short-stem prostheses superior to conventional stem prostheses in primary total hip arthroplasty? A systematic review and meta-analysis of randomised controlled trials, BMJ Open, 2018, 8, e021649.
  • [17] OSTBYHAUG P.O., KLAKSVIK J., ROMUNDSTAD P., AAMODT A., An in vitro study of the strain distribution in human femora with anatomical and customised femoral stems, J. Bone Joint Surg. Br., 2009, 91, 676–681.
  • [18] PIAO C., WU D., LUO M., MA H., Stress shielding effects of two prosthetic groups after total hip joint simulation replacement, J. Orthop. Surg. Res., 2014, 9, 71.
  • [19] SCHNURR C., SCHELLEN B., DARGEL J., BECKMANN J., EYSEL P., STEFFEN R., Low Short-Stem Revision Rates: 1–11 Year Results From 1888 Total Hip Arthroplasties, J. Arthroplasty, 2017, 32, 487–493.
  • [20] STEINHAUSER E., ELLENRIEDER M., GRUBER G., BUSCH R., GRADINGER R., MITTELMEIER W., Influence on load transfer of different femoral neck endoprostheses, Z. Orthop. Ihre Grenzgeb., 2006, 144, 386–393.
  • [21] SWAMY G., PACE A., QUAH C., HOWARD P., The Bicontact cementless primary total hip arthroplasty: long-term results, Int. Orthop., 2012, 36, 915–920.
  • [22] THOREY F., HOEFER C., ABDI-TABARI N., LERCH M., BUDDE S., WINDHAGEN H., Clinical results of the metha short hip stem: a perspective for younger patients?, Orthop. Rev. (Pavia), 2013, 5, e34.
  • [23] UMEDA N., SAITO M., SUGANO N., OHZONO K., NISHII T., SAKAI T., YOSHIKAWA H., IKEDA D., MURAKAMI A., Correlation between femoral neck version and strain on the femur after insertion of femoral prosthesis, J. Orthop. Sci., 2003, 8, 381–386.
  • [24] WESTPHAL F.M., BISHOP N., HONL M., HILLE E., PUSCHEL K., MORLOCK M.M., Migration and cyclic motion of a new short-stemmed hip prosthesis – a biomechanical in vitro study, Clin. Biomech. (Bristol, Avon), 2006, 21, 834–840.
  • [25] WITTENBERG R.H., STEFFEN R., WINDHAGEN H., BUCKING P., WILCKE A., Five-year results of a cementless short-hip-stem prosthesis, Orthop. Rev. (Pavia), 2013, 5, e4.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-99751374-c553-4fc4-82d8-c90e791b7a5d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.