Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this paper, we consider the development of reliable tools to assess the water quality and state of aquatic ecosystems in dynamic conditions a crucial need to address. One of such tools could be devised by monitoring the taxonomic structure of reservoirs’ microbiomes. Microbial taxa’s ecological and metabolic characteristics suggest their essential roles in maintaining the water ecosystem’s environmental equilibrium. The study aimed to explain the role of diversity and seasonal variability of the microbial communities in the ecosystem stability on the example of Goczałkowice Reservoir (Poland). The structure of the reservoir microbiome was studied using bioinformatics and modeling techniques. Water was sampled periodically in July & November 2010, and April 2011 at four representative sites. The abundance and relative fraction of the limnetic taxonomic units were determined in respect to the physicochemical indices. Significant seasonal variations in the number of operational taxonomic units (OTU) were observed within the reservoir basin’s main body but not at the main tributary’s mouth. The highest values of the correlation coefficients between OTU and physicochemical variables were obtained for Burkholderiales, Pseudoanabenales, Rickettsiales, Roseiflexales, Methylophilales, Actinomycetales, and Cryptophyta. These microorganisms are proposed as indicators of environmental conditions and water quality. Metataxonomic analyses of the freshwater microbiome in the reservoir, showed that microorganisms constitute conservative communities that undergo seasonal and local changes regarding the relative participation of the identified taxa. Therefore, we propose that monitoring those variations could provide a reliable measure of the state of aquatic ecosystems.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
18--30
Opis fizyczny
Bibliogr. 49 poz., rys., tab., wykr.
Twórcy
autor
- University of Silesia in Katowice, Faculty of Natural Sciences, Katowice, Poland
autor
- Medical University of Bialystok, Faculty of Medicine, Bialystok, Poland
autor
- Medical University of Bialystok, Faculty of Medicine, Bialystok, Poland
autor
- University of Silesia in Katowice, Faculty of Natural Sciences, Katowice, Poland
autor
- University of Silesia in Katowice, Faculty of Natural Sciences, Katowice, Poland
autor
- University of Silesia in Katowice, Faculty of Science and Technology, Katowice, Poland
autor
- University of Silesia in Katowice, Faculty of Natural Sciences, Katowice, Poland
autor
- University of Silesia in Katowice, Faculty of Natural Sciences, Katowice, Poland
Bibliografia
- 1. Absalon, D., Matysik, M., Woźnica, A., Łozowski, B., Jarosz, W., Ulańczyk, R., Babczyńska, A. & Pasierbiński, A. (2020). Multi-faceted environmental analysis to improve the quality of anthropogenic water reservoirs (Paprocany reservoir case study). Sensors (Switzerland), 20(9). DOI: 10.3390/s20092626
- 2. Andersen, M.S. (2007). An introductory note on the environmental economics of the circular economy. Sustainability Science, 2(1), 133-140. https://doi.org/10.1007/s11625-006-0013-6
- 3. Anderson-Glenna, M.J., Bakkestuen, V. & Clipson, N.J.W. (2008). Spatial and temporal variability in epilithic biofilm bacterial communities along an upland river gradient. FEMS Microbiology Ecology, 64(3), 407-418. DOI: 10.1111/j.1574-6941.2008.00480.x
- 4. Aneja, K. (2008). A textbook of basic and applied microbiology. New Age International.
- 5. Arora-Williams, K., Olesen, S.W., Scandella, B.P., Delwiche, K., Spencer, S.J., Myers, E.M., Abraham, S., Sooklal, A. & Preheim, S.P. (2018). Dynamics of microbial populations mediating biogeochemical cycling in a freshwater lake 06 Biological Sciences 0605 Microbiology 06 Biological Sciences 0602 Ecology 06 Biological Sciences 0604 Genetics. Microbiome, 6(1), 1-16. DOI: 10.1186/s40168-018-0556-7
- 6. Babczyńska, A., Tarnawska, M., Łaszczyca, P., Migula, P., Łozowski, B., Woźnica, A. & Augustyniak, M. (2021). Stress proteins concentration in caged Cyprinus carpioas a tool to monitor ecological stability in a model dam reservoir. Archives of Environmental Protection, 47(1), 101-116. DOI: 10.24425/aep.2021.136452
- 7. Beier, S., Witzel, K.-P. & Marxsen, J. (2008). Bacterial community composition in Central European running waters examined by temperature gradient gel electrophoresis and sequence analysis of 16S rRNA genes. Applied and Environmental Microbiology, 74(1), 188-199. DOI: 10.1128/AEM.00327-07
- 8. Bibby, K., Viau, E. & Peccia, J. (2010). Pyrosequencing of the 16S rRNA gene to reveal bacterial pathogen diversity in biosolids. Water Research, 44(14), 4252-4260. DOI: 10.1016/j.watres.2010.05.039
- 9. Chao, A., Chiu, C.-H. & Jost, L. (2010). Phylogenetic diversity measures based on Hill numbers. Philosophical Transactions of the Royal Society B: Biological Sciences, 365(1558), 3599-3609. DOI: 10.1098/rstb.2010.0272
- 10. Chorus, I. & Bartram, J. (1999). Toxic Cyanobacteria in Water: A guide to their public health consequences, monitoring and management. Cottrell, M. T. & Kirchman, D. L. (2000). Natural assemblages of marine proteobacteria and members of the Cytophaga-Flavobacter cluster consuming low-and high-molecular-weight dissolved organic matter. Applied and Environmental Microbiology, 66(4), 1692-1697.
- 11. DeLong, E.F. (2005). Microbial community genomics in the ocean. Nature Reviews. Microbiology, 3(6), 459-469. DOI: 10.1038/nrmicro1158
- 12. DeLong, E.F. & Béjà, O. (2010). The light-driven proton pump proteorhodopsin enhances bacterial survival during tough times. PLoS Biology, 8(4), 1-5. DOI: 10.1371/journal.pbio.1000359
- 13. DeLong, E.F., Taylor, L.T., Marsh, T.L. & Preston, C.M. (1999). Visualization and enumeration of marine planktonic archaea and bacteria by using polyribonucleotide probes and fluorescent in situ hybridization. Applied and Environmental Microbiology, 65(12), 5554-5563.
- 14. DeSantis, T.Z., Hugenholtz, P., Larsen, N., Rojas, M., Brodie, E.L., Keller, K., Huber, T., Dalevi, D., Hu, P. & Andersen, G.L. (2006). Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Applied and Environmental Microbiology, 72(7), 5069-5072. DOI: 10.1128/AEM.03006-05
- 15. Eiler, A. & Bertilsson, S. (2004). Composition of freshwater bacterial communities associated with cyanobacterial blooms in four Swedish lakes. Environmental Microbiology, 6(12), 1228-1243. DOI: 10.1111/j.1462-2920.2004.00657.x
- 16. Falkowski, P.G., Fenchel, T. & Delong, E.F. (2008). The microbial engines that drive earth’s biogeochemical cycles. Science, 320(5879), 1034-1039. DOI: 10.1126/science.1153213
- 17. Fredricks, D.N. (2006). Introduction to the Rickettsiales and other intracellular prokaryotes. In The Prokaryotes (pp. 457-466). Springer.
- 18. Fuhrman, J.A., Schwalbach, M.S. & Stingl, U. (2008). Proteorhodopsins: an array of physiological roles? Nature Reviews. Microbiology, 6(6), 488-494. DOI: 10.1038/nrmicro1893
- 19. Ghai, R., Hernandez, C.M., Picazo, A., Mizuno, C.M., Ininbergs, K., Díez, B., Valas, R., DuPont, C.L., McMahon, K.D., Camacho, A. & Rodriguez-Valera, F. (2012). Metagenomes of Mediterranean Coastal Lagoons. Scientific Reports, 2, 1-13. DOI: 10.1038/srep00490
- 20. Ghai, R., Rodŕíguez-Valera, F., McMahon, K.D., Toyama, D., Rinke, R., de Oliveira, T.C.S., Garcia, J.W., de Miranda, F.P. & Henrique-Silva, F. (2011). Metagenomics of the water column in the pristine upper course of the Amazon river. PLoS ONE, 6(8). DOI: 10.1371/journal.pone.0023785
- 21. Glockner, F.O., Zaichikov, E., Belkova, N., Denissova, L., Pernthaler, J., Pernthaler, A. & Amann, R. (2000). Comparative 16S rRNA analysis of lake bacterioplankton reveals globally distributed phylogenetic clusters including an abundant group of actinobacteria. Applied and Environmental Microbiology, 66(11), 5053–5065. DOI: 10.1128/AEM.66.11.5053-5065.2000
- 22. Gwiazda, R., Woźnica, A., Łozowski, B., Kostecki, M. & Flis, A. (2014). Impact of waterbirds on chemical and biological features of water and sediments of a large, shallow dam reservoir. Oceanological and Hydrobiological Studies, 43(4). DOI: 10.2478/s13545-014-0160-9
- 23. Haas, B.J., Gevers, D., Earl, A.M., Feldgarden, M., Ward, D.V., Giannoukos, G., Ciulla, D., Tabbaa, D., Highlander, S.K., Sodergren, E., Methe, B., DeSantis, T.Z., Petrosino, J.F., Knight, R. and detection in Sanger and 454-pyrosequenced PCR amplicons. Genome Research, 21(3), 494-504. DOI: 10.1101/gr.112730.110
- 24. Hahn, M.W., Kasalicky, V., Jezbera, J., Brandt, U., Jezberova, J. & Simek, K. (2010). Limnohabitans curvus gen. nov., sp. nov., a planktonic bacterium isolated from a freshwater lake. INTERNATIONAL JOURNAL OF SYSTEMATIC AND EVOLUTIONARY MICROBIOLOGY, 60(6), 1358-1365. DOI: 10.1099/ijs.0.013292-0
- 25. Hahn, M.W., Kasalicky, V., Jezbera, J., Brandt, U. & Simek, K. (2010). Limnohabitans australis sp. nov., isolated from a freshwater pond, and emended description of the genus Limnohabitans. INTERNATIONAL JOURNAL OF SYSTEMATIC AND EVOLUTIONARY MICROBIOLOGY, 60(12), 2946-2950. DOI: 10.1099/ijs.0.022384-0
- 26. Hodges, B. & Dallimore, C. (2006). Estuary, Lake and Coastal Ocean Model: ELCOM v2. 2 Science Manual. Water, 62. DOI: 10.1016/j.ecss.2007.05.033
- 27. Jankowiak, J., Hattenrath-Lehmann, T., Kramer, B.J., Ladds, M. & Gobler, C.J. (2019). Deciphering the effects of nitrogen, phosphorus, and temperature on cyanobacterial bloom intensification, diversity, and toxicity in western Lake Erie. Limnology and Oceanography, 64(3), 1347-1370. DOI: 10.1002/lno.11120
- 28. Kasalicki, V., Jezbera, J., Simek, K., Hahn, M.W., Kasalicky, V., Jezbera, J., Simek, K. & Hahn, M. W. (2010). Limnohabitans planktonicus sp. nov. and Limnohabitans parvus sp. nov., planktonic betaproteobacteria isolated from a freshwater reservoir, and emended description of the genus Limnohabitans. International Journal of Systematic and Evolutionary Microbiology, 60(12), 2710-2714. DOI: 10.1099/ijs.0.018952-0
- 29. Kostecki, M. (2021).Anew antrhropogenic lake KuźnicaWarężyńska: thermal and oxygen conditions after 14 years of exploitation in terms of protection and restoration. Archives of Environmental Protection, 47(2), 115-127. DOI: 10.24425/aep.2021.137283
- 30. Logares, R., Brate, J., Heinrich, F., Shalchian-Tabrizi, K., Bertilsson, S., Brte, J., Heinrich, F., Shalchian-Tabrizi, K. & Bertilsson, S. (2010). Infrequent transitions between saline and fresh waters in one of the most abundant microbial lineages (SAR11). Molecular Biology and Evolution, 27(2), 347-357. DOI: 10.1093/molbev/msp239
- 31. Malmstrom, R.R., Kiene, R.P., Vila, M. & Kirchman, D.L. (2005). Dimethylsulfoniopropionate (DMSP) assimilation by Synechococcus in the Gulf of Mexico and northwest Atlantic Ocean. Limnology and Oceanography, 50(6), 1924-1931. DOI: 10.4319/lo.2005.50.6.1924
- 32. Matysik, M., Absalon, D., Habel, M. & Maerker, M. (2020). Surface water quality analysis using CORINE data: An application to assess reservoirs in Poland. Remote Sensing, 12(6), 16-20. DOI: 10.3390/rs12060979
- 33. Mendez-Garcia, C., Pelaez, A.I., Mesa, V., Sánchez, J., Golyshina, O.V. & Ferrer, M. (2015). Microbial diversity and metabolic networks in acid mine drainage habitats. Frontiers in Microbiology, 6(475). DOI: 10.3389/fmicb.2015.00475
- 34. Miller, S.R., Strong, A.L., Jones, K.L. & Ungerer, M.C. (2009). Bar-coded pyrosequencing reveals shared bacterial community properties along the temperature gradients of two alkaline hot springs in Yellowstone National Park. Applied and Environmental Microbiology, 75(13), 4565-4572. DOI: 10.1128/AEM.02792-08
- 35. Percent, S.F., Frischer, M.E., Vescio, P.A., Duffy, E.B., Milano, V., McLellan, M., Stevens, B.M., Boylen, C.W. & Nierzwicki-Bauer, S.A. (2008). Bacterial community structure of acid-impacted lakes: What controls diversity? Applied and Environmental Microbiology, 74(6), 1856-1868. DOI: 10.1128/AEM.01719-07
- 36. Pernthalerlr, J., Sattlerl, B., Simek, K., Schwarzenbacherl, A., Psennerl, R., Pernthaler, J., Sattler, B., Šimek, K., Schwarzenbacher, A. & Psenner, R. (1996). Top-down effects on the size-biomass distribution of a freshwater bacterioplankton community. Aquatic Microbial Ecology, 10(3), 255-263. DOI: 10.3354/ame010255
- 37. Salcher, M.M., Pernthaler, J. & Posch, T. (2011). Seasonal bloom dynamics and ecophysiology of the freshwater sister clade of SAR11 bacteria “that rule the waves” (LD12). The ISME Journal, 5(8), 1242-1252. DOI: 10.1038/ismej.2011.8
- 38. Sekar, R., Pernthaler, A., Pernthaler, J., Posch, T., Amann, R. & Warnecke, F. (2003). An Improved Protocol for Quantification of Freshwater Actinobacteria by Fluorescence In Situ Hybridization An Improved Protocol for Quantification of Freshwater Actinobacteria by Fluorescence In Situ Hybridization. Applied and Environmental Microbiology, 69(5), 2928-2935. DOI: 10.1128/AEM.69.5.2928
- 39. Smith, V.H., Joye, S.B. & Howarth, R.W. (2006). Eutrophication of freshwater and marine ecosystems. Limnol. Oceanogr., 51(1, part 2), 351-355. DOI: 10.4319/lo.2006.51.1_part_2.0351
- 40. Stanimirova, I., Woznica, A., Plociniczak, T., Kwasniewski, M. & Karczewski, J. (2016). A modified weighted mixture model for the interpretation of spatial and temporal changes in the microbial communities in drinking water reservoirs using compositional phospholipid fatty acid data. Talanta, 160, 148-156. DOI: 10.1016/j.talanta.2016.07.006
- 41. Thatoi, H., Behera, B.C., Mishra, R.R. & Dutta, S.K. (2013). Biodiversity and biotechnological potential of microorganisms from mangrove ecosystems: A review. Annals of Microbiology, 63(1), 1-19. DOI: 10.1007/s13213-012-0442-7
- 42. USEPA. (2006). Method 1680: Fecal Coliforms in Sewage Sludge (Biosolids) by Multiple-Tube Fermentation using Lauryl Tryptose Broth (LTB) and EC Medium. USEPA.
- 43. Vaishnava, S., Yamamoto, M., Severson, K.M., Ruhn, K. a, Yu, X., Koren, O., Ley, R., Wakeland, E.K. & Hooper, L.V. (2011). The Antibacterial Lectin RegIII. Science, 334 (October), 255-258.
- 44. Vila-Costa, M., Simo, R., Harada, H., Gasol, J.M., Slezak, D., Kiene, R.P., Simó, R., Harada, H., Gasol, J.M., Slezak, D. & Kiene, R.P. (2006). Dimethylsulfoniopropionate uptake by marine phytoplankton. Science (New York, N.Y.), 314 (5799), 652-654. DOI: 10.1126/science.1131043
- 45. Wang, Q., Garrity, G.M., Tiedje, J.M. & Cole, J.R. (2007). Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Applied and Environmental Microbiology, 73(16), 5261-5267. DOI: 10.1128/AEM.00062-07
- 46. Warnecke, F., Amann, R. & Pernthaler, J. (2004). Actinobacterial 16S rRNA genes from freshwater habitats cluster in four distinct lineages. Environmental Microbiology, 6(3), 242-253. DOI: 10.1111/j.1462-2920.2004.00561.x
- 47. Woznica, A., Nowak, A., Ziemski, P., Kwasniewski, M. & Bernas, T. (2013). Stimulatory Effect of Xenobiotics on Oxidative Electron Transport of Chemolithotrophic Nitrifying Bacteria Used as Biosensing Element. PLoS ONE, 8(1). DOI: 10.1371/journal.pone.0053484
- 48. Zeng, Y., Kasalický, V., Šimek, K., Koblízek, M., Kasalicky, V., Simek, K. & Koblizek, M. (2012). Genome sequences of two freshwater betaproteobacterial isolates, limnohabitans species strains Rim28 and Rim47, indicate their capabilities as both photoautotrophs and ammonia oxidizers. Journal of Bacteriology, 194(22), 6302–6303. DOI: 10.1128/JB.01481-12
- 49. Zwart, G., Crump, B.C., Kamst-van Agterveld, M.P., Hagen, F. & Han, S.K. (2002). Typical freshwater bacteria: An analysis of available 16S rRNA gene sequences from plankton of lakes and rivers. Aquatic Microbial Ecology, 28(2), 141-155. DOI: 10.3354/ame028141
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-99738ed6-9011-4a51-a8be-2d5f4eeed414