PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Thulium-doped optical fibers for fiber lasers operating at around 2 μm

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper deals with spectral and lasing characteristics of thulium-doped optical fibers fabricated by means of two doping techniques, i.e. via a conventional solution-doping method and via a nanoparticle-doping method. The difference in fabrication was the application of a suspension of aluminum oxide nanoparticles of defined size instead of a conventional chloride-containing solution. Samples of thulium-doped silica fibers having nearly identical chemical composition and wave guiding properties were fabricated. The sample fabricated by means of the nanoparticle-doping method exhibited longer lifetime, reflecting other observations and the trend already observed with the fibers doped with erbium and aluminum nanoparticles. The fiber fabricated by means of the nanoparticle-doping method exhibited a lower lasing threshold (by »20%) and higher slope efficiency (by »5% rel.). All these observed differences are not extensive and deserve more in-depth research; they may imply a positive influence of the nanoparticle approach on properties of rare-earth-doped fibers for fiber lasers.
Rocznik
Strony
981--986
Opis fizyczny
Bibliogr. 34 poz., rys.
Twórcy
autor
  • Institute of Photonics and Electronics, Czech Academy of Sciences, 57 Chaberska St., Prague 8, 182 51, Czech Republic
autor
  • Institute of Photonics and Electronics, Czech Academy of Sciences, 57 Chaberska St., Prague 8, 182 51, Czech Republic
autor
  • Institute of Photonics and Electronics, Czech Academy of Sciences, 57 Chaberska St., Prague 8, 182 51, Czech Republic
autor
  • Institute of Photonics and Electronics, Czech Academy of Sciences, 57 Chaberska St., Prague 8, 182 51, Czech Republic
autor
  • Institute of Photonics and Electronics, Czech Academy of Sciences, 57 Chaberska St., Prague 8, 182 51, Czech Republic
autor
  • Institute of Photonics and Electronics, Czech Academy of Sciences, 57 Chaberska St., Prague 8, 182 51, Czech Republic
autor
  • Institute of Photonics and Electronics, Czech Academy of Sciences, 57 Chaberska St., Prague 8, 182 51, Czech Republic
autor
  • Institute of Photonics and Electronics, Czech Academy of Sciences, 57 Chaberska St., Prague 8, 182 51, Czech Republic
Bibliografia
  • [1] C.J. Koester and E. Snitzer, “Amplification in a fiber laser”, Applied Optics 3, 1182‒1186 (1964).
  • [2] J.E. Townsend, S.B. Poole, and D. N. Payne, “Solution-doping technique for fabrication of rare-earth-doped optical fibers”, Electronics Letters 23(7), 329–331 (1987).
  • [3] E. Desurvire, J.R. Simpson, and P. C. Becker, “High-gain erbium-doped travelling-wave fiber amplifier”, Optics Letters12(11), 888–890 (1987).
  • [4] D.J. Richardson, J. Nilsson, and W.A. Clarkson, “High power lasers: current status and future perspectives”, Journal of the Optical Society of America B-Optical Physics 27, B63-B92 (2010).
  • [5] P. Grzes, M. Michalska, and J. Swiderski, “Picosecond mode-locked Tm-doped fibre laser and amplifier system providing over 20 W of average output power at 1994 nm”, Metrology and Measurement Systems 25, 649‒658 (2018).
  • [6] M. Janeczek, J. Swiderski, A. Czerski, B. Zywicka, J. Bujok, M. Szymonowicz, E. Bilewicz, M. Dobrzynski, M. Korczynski, A. Chroszcz, and Z. Rybak, “Preliminary evaluation of thulium doped fiber laser in pig model of liver surgery”, Biomed Research International, No. 3275284 (2018).
  • [7] A. Sincore, J.D. Bradford, J. Cook, L. Shah, and M.C. Richardson, “High average power thulium-doped silica fiber lasers: Review of systems and concepts”, IEEE Journal of Selected Topics in Quantum Electronics 24 (2018), No. 0901808. DOI: 10.1109/JSTQE.2017.2775964
  • [8] J. Sotor, G. Sobon, M. Kowalczyk, W. Macherzynski, P. Paletko, and K.M. Abramski, “Ultrafast thulium-doped fiber laser mode locked with black phosphorus”, Optics Letters 40, 3885‒3888 (2015).
  • [9] N.J. Ramirez-Martinez, M. Nunez-Velazquez, A.A. Umnikov, and J.K. Sahu, “Highly efficient thulium-doped high-power laser fibers fabricated by MCVD”, Optics Express 27, 196‒201 (2019).
  • [10] D. Klimentov, N. Tolstik, V.V. Dvoyrin, R. Richter, and I.T. Sorokina, “Flat-top supercontinuum and tunable femtosecond fiber laser sources at 1.9‒2.5 μm”, Journal of Lightwave Technology 34, 4847‒4855 (2016). DOI: 10.1109/JLT.2016.2604039
  • [11] S.D. Jackson, “Towards high-power mid-infrared emission from a fiber laser”, Nature Photonics 6(7), 423–431 (2012)
  • [12] M.N. Zervas and C.A. Codemard, “High power fiber lasers: A review, IEEE Journal of Selected Topics in Quantum Elec-tronics 20, 219‒241 (2014).
  • [13] G.G. Vienne, J.E. Caplen, L. Dong, J.D. Minelly, J. Nilsson, and D.N. Payne, “Fabrication and characterization of Yb3+: Er3+ phosphosilicate fibers for lasers”, Journal of Lightwave Technology 16(11), 1990‒2000 (1998).
  • [14] A.L.G. Carter, S.B. Poole, and M. G. Sceats, “Flash-condensation technique for the fabrication of high-phosphorus-content rare-earth-doped fibers”, Electronics Letters 28(21), 2009‒2011 (1992).
  • [15] J.E. Townsend, W. L. Barnes, and K. P. Jedrzejewski, “Yb3+ sensitized Er3+ doped silica optical fiber with ultrahigh transfer efficiency and gain”, Electronics Letters 27(21), 1958‒1961, (1991).
  • [16] J. Kirchhof, S. Unger, A. Schwuchow, S. Jetschke, and B. Knappe, “Dopant interactions in high power laser fibers”, Proc. SPIE 5723, Optical components and materials II, 261‒272.
  • [17] M.M. Bubnov, A.N. Guryanov, and K.V. Zotov, “Optical proper-ties of fibers with aluminophosphosilicate glass cores”, Quantum Electronics 39, 857‒862 (2009).
  • [18] A. Dhar, S. Das, H.S. Maiti, and R. Sen, “Fabrication of high aluminum containing rare-earth doped fiber without core-clad interface defects”, Optics Communications 283, 2344‒2349 (2010).
  • [19] J. Cajzl, P. Peterka, M. Kowalczyk, J. Tarka, G. Sobon, J. Sotor, J. Aubrecht, P. Honzatko, and I. Kasik, “Thulium-doped silica fibers with enhanced fluorescence lifetime and their application in ultrafast fiber lasers”, Fibers 6, 66 (2018). DOI:10.3390/fib6030066
  • [20] O. Podrazky, I. Kasik, M. Pospisilova, and V. Matejec, “Use of alumina nanoparticles for preparation of erbium-doped fibers”, 2007 IEEE LEOS Annual Meeting Conference Proceedings 1‒2, 246‒247 (2007).
  • [21] A. Pastouret, C.Gonnet, C. Collet, O. Cavani, E. Burov, C. Cha-neac, A. Carton, and J.P. Jolivet, “Nanoparticle doping process for improved fibre amplifiers and lasers”, Proc. SPIE 7195, Fiber lasers VI, Technology, systems and applications, 2009, 71951X-1–71951X-8.
  • [22] I. Kasik, O. Podrazky, J. Mrazek, J. Cajzl, J. Aubrecht, J. Probos-tova, P. Peterka, P. Honzatko, and A. Dhar, “Erbium and Al2O3 nanocrystals -doped silica optical fibers”, Bull. Pol. Ac.: Tech. 62, 641‒646 (2014).
  • [23] I. Kasik, P. Peterka, J. Mrazek, and P. Honzatko, “Silica optical fibers doped with nanoparticles for fiber lasers and broadband sources”, Current Nanoscience 12, 277‒290 (2016).
  • [24] C.C. Baker, E.J. Friebele, Ch.G. Askins, B.A. Marcheschi, J.R. Peele, W. Kim, J. Sanghera, J. Zhang, M. Dubinskii, and Y. Chen, “Nanoparticle doping for high power lasers at eye safer wave-lengths”, Proc. Laser congress 2016 (ASSL, LSC, LAC), 2016, AM3A.1.
  • [25] S.R. Nagel, J.B. Mac Chesney, and K.L. Walker, “An overview of the modified chemical vapor-deposition (MCVD) process and performance”, IEEE Journal of Quantum Electronics 18(4), 459‒476 (1982).
  • [26] J.E. Townsend, S.B. Poole, and D.N. Payne, “Solution-doping technique for fabrication of rare-earth-doped optical fibers”, Electronics Letters 23, 329‒331 (1987).
  • [27] J. Aubrecht, P. Peterka, P. Koska, O. Podrazky, F. Todorov, P. Honzatko, and I. Kasik, “Self-swept holmium fiber laser near 2100 nm”, Optics Express 25, 4120‒4125 (2017). DOI:org/10.1364/Oe.25.004120
  • [28] D. Marcuse, Principles of optical fiber measurement, Academic Press, New York, 1981.
  • [29] E.J. Friebele, C.C. Baker, Ch.G.Askins, J.P. Fontana, M.P. Hunt, J. R. Peele, B.A. Marcheschi, E. Oh, W. Kim, J. Sanghera, J. Zhang, R.K. Pattnaik, L.D. Merkle, and M. Dubinskii, “Erbium nanoparticle doped fibers for sufficient, resonantly-pumped Erdoped fiber laser”, Proc. SPIE 9344, Fiber lasers XII: Technology, systems and applications, 934412-1–934412-8 (2015).
  • [30] C.C. Baker, E.J. Friebele, A.A. Burdett, D.L. Rhonehouse, J. Fontana, W. Kim, S.R.Bowman, L. B. Shaw, J. Sanghera, J. Zhang, R. Patnnaik, M. Dubinski, J. Ballato, C. Kucera, A. Vargas, A. Hemming, N. Simakov, and J. Haub, “Nanoparticle doping for high power fiber lasers at eye-safer wavelengths”, Optics Express 25(12), 13903-13915 (2017).
  • [31] S.D. Jackson and T.A. King, “Theoretical modeling of Tm-doped silica fiber lasers”, Journal of Lightwave Technology 17(5), 948–956 (1999).
  • [32] M. Pisarik, P. Peterka, J. Aubrecht, J. Cajzl, A. Benda, D. Mares, F. Todorov, O. Podrazky, P. Honzatko, and I. Kasik, “Thulium-doped fibre broadband source for spectral region near 2 micrometers”, Opto-Electronics Review 24, 223‒231 (2016). DOI:10.1515/oere-2016-0022.
  • [33] J. Chen, X. Zhu, and W. Sibbett, “Rate-equation studies of erb-um-doped fiber lasers with common pump and laser energy bands”, Journal of Optical Society B 9(10), 1876–1882 (1992).
  • [34] P. Peterka, I. Kasik, A. Dhar, B. Dussardier, and W. Blanc, “Theoretical modeling of fiber laser at 810 nm based on thulium-doped silica fibers with enhanced 3H4 level lifetime”, Optics Express, 19, 2773‒2781 (2011). DOI.org/10.1364/oe.19.002773.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-99736e9e-1e14-49c5-8508-9520f119f8bf
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.