Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
It is known that during operation, the aircraft construction materials are exposed to significant mechanical loads and changes in temperature for a very short period of time. All this leads to various defects and damages in the aircraft assemblies and units that need to be inspected for the safe operation of the aircraft, their assemblies, and units. In some cases, the implementation of inspection or diagnostic is accompanied by the emergence of technical difficulties caused by the large size of the aircraft assemblies or units and limited access to their local places. Under such conditions, ensuring the possibility of diagnosis in hard-to-reach places of the object becomes especially important. The problem can be solved by applying wireless technologies. It allows spatial separation of the probes and the signal processing units, which simplifies the scanning of the surfaces of the large assemblies and units in hard-to-reach places. In this article, the description of the developed wireless system of eddy current inspection for aircraft structural materials is given. Experimental results of object scanning are given in the form of a distribution of the values of probe signal informative parameters (amplitude, frequency and decrement) along the object coordinates.
Czasopismo
Rocznik
Tom
Strony
22--31
Opis fizyczny
Bibliogr. 16 poz., rys., tab., wzory
Twórcy
autor
- Department of Automation and Non-Destructive Testing Systems, National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”, 37, Prospect Peremohy, Kyiv 03056, Ukraine
autor
- Department of Automation and Non-Destructive Testing Systems, National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”, 37, Prospect Peremohy, Kyiv 03056, Ukraine
autor
- Karpenko Physico-Mechanical Institute of the National Academy of Sciences of Ukraine, 5, Naukova Street, Lviv 79060, Ukraine
autor
- Department of Automation and Non-Destructive Testing Systems, National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”, 37, Prospect Peremohy, Kyiv 03056, Ukraine
autor
- Department of Automation and Non-Destructive Testing Systems, National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”, 37, Prospect Peremohy, Kyiv 03056, Ukraine
autor
- Institute of Mechanics at the Bulgarian Academy of Sciences, 4, Acad. G. Bonchev Street, Sofia 1113, Bulgaria
Bibliografia
- [1] Udpa, S.S. and More, P.O., Eds. „Nondestructive Testing Handbook (Third Edition), 5, Electromagnetic Testing”. American Society for NDT, Columbus, OH, USA (2004).
- [2] Ostash, O., Fedirko, V., Bychkov, S., Uchanin, V. and Moliar, O. „Mekhanika ruinuvannia i mitsnist materialiv [Fracture Mechanics and Strength of Materials] (in Ukrainian), Vol. 9. Mitsnist i dovhovichnist materialiv litaka ta konstruktyvnykh elementiv [Strength and Durability of Airplane Materials and Structural elements] (in Ukrainian).” Spolom, Lviv (2007).
- [3] Yin, W. and Peyton, A. „Thickness Measurement of Non-Magnetic Plates using Multi-Frequency Eddy Current Sensors.” NDT&E International Vol. 40, No. 1 (2006): pp. 43-48.
- [4] Dickinson, S.J., Binns, R., Yin, W., Davis, C., and Peyton, A.J. “The Development of a Multi-Frequency Electromagnetic Instrument for Monitoring the Phase Transformation of Hot Strip Steel.” IEEE Instrumentation and Measurement Technology Conference Proceedings: pp. 1091-1096. Ottawa, ON, Canada, May 16-19, 2005.
- [5] Kalenychenko, Y., Bazhenov, V., Koval, V., and Ratsebarkiy, S. „Determination of Mechanical Properties of Paramagnetic Materials by Multi-Frequency Method.” International Journal “NDT Days” Vol. 2, No. 1 (2019): pp. 406-416.
- [6] Sophian, A., Tian, G.Y., and Fan, M. “Pulsed Eddy Current Non-Destructive Testing and Evaluation: A Review.” Chinese Journal of Mechanical Engineering Vol. 30 (2017) pp. 500-14.
- [7] Johnson, M.J. „Pulsed Eddy-Current Measurements for Materials Characterization and Flaw Detection”. University of Surrey, UK (1997).
- [8] Wu, J., Zhou, D., Wang, J., Guo, X., You, L., An, W., and Zhang, H. „Surface Crack Detection for Carbon Fiber Reinforced Plastic (CFRP) Materials using Pulsed eddy Current Testing.” IEEE Far East Forum on Nondestructive Evaluation/Testing (FENDT): pp. 181-185. Chengdu, June 20-23, 2014.
- [9] Uchanin, V. „Nakladni vykhrostrumovi peretvorjuvachi podvijnogho dyferencijuvannja [Surface Double Differential Type Eddy Current Probes] (in Ukrainian).” Spolom, Lviv (2013).
- [10] Kren, A.P., Delendyk, M.N., and Ivanov, V.P. „Industry 4.0: Transformations in Non-Destructive Testing.” Science and Innovation Vol. 2, No. 192 (2019): pp. 28-32.
- [11] Petryk, V.F., Protasov, A.G., Galagan, R., Muraviov A., and Lysenko, J. „Smartphone-Based Automated Non-Destructive Testing Devices.” Devices and Methods of Measurements Vol. 11, No. 4 (2020): pp. 272-278.
- [12] Lysenko, I., Eremenko, V., Kuts, Y., Protasov, A., and Uchanin, V. „Advanced Signal Processing Methods for Inspection of Aircraft Construction Materials.” Transactions on Aerospace Research Vol. 259, No. 2 (2020): pp. 27-35.
- [13] Shebes, M.R. Problem Book on the Theory of Linear Electric Circuits, 3rd edn. [Zadachnyk po teoryy lyneinykh elektrycheskykh tsepei] (in russian). High School, USSR (1982).
- [14] Bessonov, L.A. „Theoretical Foundations of Electrical Engineering [Teoretycheskye osnovy elektrotekhnyky], (in russian).” High School, USSR (1967).
- [15] Lysenko, I., Kuts, Y., Protasov, A., Redka, M., and Uchanin, V. „Enhanced Feature Extraction Algorithms Using Oscillatory-Mode Pulsed Eddy Current Techniques for Aircraft Structure Inspection”. Transactions on Aerospace Research Vol. 3, No. 264 (2021): pp. 1-16.
- [16] Lazarev, Y. “Modeling Processes and Systems in MATLAB [Modelyrovanye protsessov y system v MATLAB] (in russian)”. BHV, Kyiv (2005).
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-996ab11c-8412-4204-8b86-a76a94981c1c