PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Research on mechatronics integration modelling and coupled dynamic characteristics in a shearer cutting section gearbox

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The time-varying mesh stiffness (TVMS) and static transmission error (STE) are the main dynamic load excitation forms in the shearer cutting section gearbox (SCSG). The gearbox comprises two-stage planetary gear sets and multi-stage parallel gear sets. The structure of the multi-stage transmission and its rich internal dynamic excitation result in unique and complex dynamic behavior. In this paper, a coupled mechatronic integration dynamic model for SCSG and motor is developed, in which the multi-stage coupling excitation effects caused by gear mesh stiffness and static transmission error are fully simulated, thereby clarifying the interaction mechanism between the motor and transmission system. Based on the simulation model, the dynamic load characteristics of the SCSG are studied. The results show that ­load-sharing performance is improved with the increases of drum torque in the planetary gear sets (PGSs), which indicates that the load-sharing performance of the planetary gears can be effectively guaranteed in the process of increasing the coal mining rate. Through the combination of numerical simulation and experimental research, it is verified that the simulated signals are consistent with the experimental data for motor current. Meanwhile, relying on the proposed mechatronics model, extensive vibration information of the gearbox can be identified through the stator current signal. These results reference the vibration response analysis and signal monitoring of complex transmission systems.
Rocznik
Strony
115--145
Opis fizyczny
Bibliogr. 33 poz., rys., tab., wykr.
Twórcy
autor
  • Zhaoqing University, College of Mechanical and Automotive Engineering, Zhaoqing, China
autor
  • Zhaoqing University, College of Mechanical and Automotive Engineering, Zhaoqing, China
autor
  • Zhaoqing University, College of Mechanical and Automotive Engineering, Zhaoqing, China
autor
  • Zhaoqing University, College of Mechanical and Automotive Engineering, Zhaoqing, China
Bibliografia
  • [1] A. Kahraman, Load Sharing Characteristics of Planetary Transmissions. Mech. Mach. Theory 29 (8), 1151-1165(1994). DOI: https://doi.org/10.1016/0094-114X(94)90006-X.
  • [2] A. Kahraman, Planetary Gear Train Dynamics. J. Mech. Design 116 (3), 713-720 (1994).DOI: https://doi.org/10.1115/1.2919441.
  • [3] M. Inalpolat, A. Kahraman, A Theoretical and Experimental Investigation of Modulation Sidebands of Planetary Gear Sets. J. Sound Vib. 323, 677-696 (2009). DOI: https://doi.org/10.1016/j.jsv.2009.01.004.
  • [4] M. Inalpolat, A. Kahraman, A Dynamic Model to Predict Modulation Sidebands of a Planetary Gear Set Having Manufacturing Errors. J. Sound Vib. 329 (4), 371-393 (2010). DOI: https://doi.org/10.1016/j.jsv.2009.09.022.
  • [5] C.J. Bahk, R.G. Parker, Analytical Solution for the Nonlinear Dynamics of Planetary Gears. J. Comput. Nonlin. Dyn. 6 (2), 021007 (2011). DOI: https://doi.org/10.1115/1.4002392.
  • [6] D. Sheng, R. Zhu, G. Jin, F. LU, H. Bao, Dynamic Load Sharing Behavior of Transverse-Torsional Coupled Planetary Gear Train with Multiple Clearances. J. Cent. South Univ. 22 (7), 2521-2532 (2015).DOI: https://doi.org/10.1007/s11771-015-2781-6.
  • [7] Z. Cao, Y. Shao, M. Rao, W. Yu, Effects of the Gear Eccentricities on the Dynamic Performance of a Planetary Gear Set. Nonlinear Dyn. 91 (1), 1-15 (2018). DOI: https://doi.org/10.1007/s11071-017-3738-0.
  • [8] J .I. Pedrero, M. Pleguezuelos, M.B. Sánchez, Influence of Meshing Stiffness on Load Distribution Between Planets of Planetary Gear Drives. Mech. Mach. Theory 170, 104718 (2022).DOI: https://doi.org/10.1016/j.mechmachtheory. 2021.104718.
  • [9] W. Sun, X. Li, J. Wei, A. Zhang, X. Hu, A Study on Load-Sharing Structure of Multi-stage Planetary Transmission System. J. Mech. Sci. Technol. 29 (4), 1501-1511(2015). DOI: https://doi.org/10.1007/s12206-015-0323-7.
  • [10] L. Zhang, Y. Wang, K. Wu, R. Sheng, Three-Dimensional Modeling and Structured Vibration Modes of Two-Stage Helical Planetary Gears Used in Cranes. Shock Vib. 2017, 1-18 (2017).DOI: https://doi.org/10.1155/2017/9864959.
  • [11] H . Zhai, C. Zhu, C. Song, H. Liu, H. Bai, Influences of Carrier Assembly Errors on the Dynamic Characteristics for Wind Turbine Gearbox. Mech. Mach. Theory 103, 138-147 (2016).DOI: https://doi.org/10.1016/j.mechmachtheory.2016.04.015.
  • [12] S. Mo, S. Ma, G. Jin, Y. Zhang, C. Lv, H. Houjoh, Research on Multiple-Split Load Sharing Characteristics of 2-Stage External Meshing Star Gear System in Consideration of Displacement Compatibility. Math. Probl. Eng.2017 (1), 1037479 (2017). DOI: https://doi.org/10.1155/2017/1037479.
  • [13] A. Hammami, A. Fernandez Del Rincon, F. Chaari, F. Viadero Rueda, M. Haddar, Dynamic Behaviour of Back to Back Planetary Gear in Run up and Run down Transient Regimes. J. Mech. 31 (4), 481-491 (2015).DOI: https://doi.org/10.1017/jmech.2014.95.
  • [14] A. Hammami, A. Fernandez Del Rincon, F. Chaari, M.I. Santamaria, F.V. Rueda, M. Haddar, Effects of Variable Loading Conditions on the Dynamic Behavior of Planetary Gear with Power Recirculation. Measurement 94,306-315 (2016). DOI: https://doi.org/10.1016/j.measurement.2016.07.083.
  • [15] A. Mbarek, A. Fernandez Del Rincon, A. Hammami, M. Iglesias, F. Chaari, F. Viadero, M. Haddar, Comparison of Experimental and Operational Modal Analysis on a Back to Back Planetary Gear. Mech. Mach. Theory 124,226-247 (2018). DOI: https://doi.org/10.1016/j.mechmachtheory.2018.03.005.
  • [16] A. Mężyk, Minimization of Transient Forces in Anelectro-Mechanical System. Struct. Optimization 8, 251-256(1994). DOI: https://doi.org/10.1007/BF01742711.
  • [17] A. Mężyk, Modelling and Optimization of Transmission Systems with an Asynchronous Motor. J. Thero. Appl. Mech. 41 (01), 169-197 (2003).
  • [18] E. Świtoński, A. Mężyk, Selection of Optimum Dynamic Features for Mechatronic Drive Systems. Automat. Constr. 17 (3), 251-256 (2008). DOI: https://doi.org/10.1016/j.autcon.2007.05.001.
  • [19] A. Mężyk, W. Klein, M. Fice, M. Pawlak, K. Basiura, Mechatronic Model of Continuous Miner Cutting Drum Driveline. Mechatronics 37, 12-20 (2016). DOI: https://doi.org/10.1016/j.mechatronics.2015.11.004.
  • [20] W. Bai, D. Qin, Y. Wang, T.C. Lim, Dynamic Characteristics of Motor-Gear System under Load Saltations and Voltage Transients. Mech. Syst. Signal Pr. 100, 1-16 (2018). DOI: https://doi.org/10.1016/j.ymssp.2017.07.039.
  • [21] W. Bai, D. Qin, Y. Wang, T.C. Lim, Dynamic Characteristic of Electromechanical Coupling Effects in Motor-Gear System. J. Sound Vib. 423, 50-64 (2018). DOI: https://doi.org/10.1016/j.jsv.2018.02.033.
  • [22] J . Lin, R.G. Parker, Analytical Characterization of the Unique Properties of Planetary Gear Free Vibration. J. Vib. Acoust. 121, 316-321 (1999). DOI: https://doi.org/10.1115/1.2893982.
  • [23] Y. Zhang, Q. Wang, H. Ma, J. Huang, C. Zhao, Dynamic Analysis of Three-Dimensional Helical Geared Rotor System with Geometric Eccentricity. J. Mech. Sci. Technol. 27 (11), 3231-3242 (2013).DOI: https://doi.org/10.1007/s12206-013-0846-8.
  • [24] R .H. Park, Two-Reaction Theory of Synchronous Machines Generalized Method of Analysis- Part I. Trans. AIEE.48 (03), 716-727(1929). DOI: 10.1109/T-AIEE.1929.5055275.
  • [25] A.T. Tadeo, K.L. Cavalca, M.J. Brennan, Dynamic Characterization of a Mechanical Coupling for a Rotating Shaft.P. I. Mech. Eng. C-J Mec. 225, 604-616 (2011). DOI: https://doi.org/10.1243/09544062JMES2214.
  • [26] P. Dewangan, A. Parey, A. Hammami, F. Chaari, M. Haddar, Damage Detection in Wind Turbine Gearbox Using Modal Strain Energy. Eng. Fail. Anal. 107, 104228, (2020).DOI: https://doi.org/10.1016/j.engfailanal.2019.104228.
  • [27] S. Wei, J. Zhao, Q. Han, F. Chu, Dynamic Response Analysis on Torsional Vibrations of Wind Turbine Geared Transmission System with Uncertainty. Renew. Energ. 78, 60-67 (2015).DOI: https://doi.org/10.1016/j.renene.2014.12.062.
  • [28] S. Wei, Q. Han, Z. Peng, F. Chu, Dynamic Analysis of Parametrically Excited System under Uncertainties and Multi-Frequency Excitations. Mech. Syst. Signal Pr. 72-73, 762-784 (2016).DOI: https://doi.org/10.1016/j.ymssp.2015.10.036.
  • [29] R .G. Parker, J. Lin, Mesh Phasing Relationships in Planetary and Epicyclic Gears. ASME. J. Mech. Des. 126,365-370 (2004). DOI: https://doi.org/10.1115/1.1667892.
  • [30] K. Krauze, K. Mucha, T. Wydro, R. Klempka, Assessment of the Structure of Cutting Heads with Regard to the Mining Machine Load Using Proprietary Software. Energies, 15, 6886 (2022).DOI: https://doi.org/10.3390/en15196886.
  • [31] Ł. Bołoz, L. F. Castañeda, Computer-Aided Support for the Rapid Creation of Parametric Models of Milling Units for Longwall Shearers. Management Systems in Production Engineering, 26 (4): 193-199 (2018).DOI: https://doi.org/10.1515/mspe-2018-0031.
  • [32] J . Jia, Research on Theory of Sharer Drum Cutting Coal and Cutting Dynamics. Master’s thesis, Taiyuan University of Technology, Taiyuan, July (2016).
  • [33] S. Mo, T. Zhang, G. Jin, X. Cao, H. Gao, Analytical Investigation on Load Sharing Characteristics of Herringbone Planetary Gear Train with Flexible Support and Floating Sun Gear. Mech. Mach. Theory 144, 103670 (2020).DOI: https://doi.org/10.1016/j.mechmachtheory.2019.103670.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-996a0cd5-ed6b-46cd-887e-bf83ef10856e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.