Powiadomienia systemowe
- Sesja wygasła!
- Sesja wygasła!
Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Pakistan currently has a problem in the energy supply and demand. There is a large gap between supply and demand for electricity. The depletion of fossil fuels and environmental pollution factors also exist. These factors convert the intention to implement co-firing of coal and biomass. Being agricultural land and producing a significant amount of agricultural waste and have a little valuable use of this waste. Keeping in mind for effective use of this agro-waste the pyrolysis behavior of Pakistani local coal (LC), rice husk (RH), and their blends 75LC/25RH wt.%, 50LC/50RH wt.%, 25LC/75RH wt.% were studied using a thermogravimetric analyzer in a nitrogen environment with 10K/min heating rate. A sequential method approach is used to calculate kinetics parameters quickly and accurately. With the assumption of first-order reaction, calculation is performed. The research findings revealed that the addition of rice husk to the blends led to an increase in the activation energy for devolatilization, rising from 22.9 kJ/mol to 45.2 kJ/mol. However, the activation energy for char degradation decreased from 60.4 kJ/mol (100%LC) to 14.2 kJ/mol (100%RH) as the proportion of rice husk in the blends increased. Moreover, the rate of mass degradation also increased with higher amounts of rice husk in the blends. These results suggest that the decrease in char degradation activation energy allows for a reduction in operational temperature, thereby facilitating a reliable co-pyrolysis process. Such a process holds the potential to design a low-cost and effective gasification process, aiding in overcoming the energy challenges.
Czasopismo
Rocznik
Tom
Strony
161--168
Opis fizyczny
Bibliogr. 25 poz.
Twórcy
autor
- PhD; Department of Advanced Material Technologies, Faculty of Chemistry, Wroclaw University of Science and Technology, Wroclaw, Poland
autor
- Lecturer; Department of Technology, University of Lahore, Pakistan
autor
- PhD; Faculty of Geoengineering, Mining and Geology, Wroclaw University of Science and Technology, Wroclaw, Poland
autor
- Assoc. Prof.; Department of Chemical Engineering, University of Engineering and Technology, Kala Shah Kaku, Lahore, Pakistan
autor
- Assoc. Prof.; Department of Chemical Engineering, University of Engineering and Technology, Kala Shah Kaku, Lahore, Pakistan
Bibliografia
- [1] E. Dugarova and N. Gülasan. (2017). Challenges and Opportunities in the Implementation of the Sustainable Development Goals 2 Lead Authors. [Online]. Available: www.unrisd.org
- [2] C. A. Powell and B. D. Morreale. (2008). Materials Challenges in Advanced Coal Conversion Technologies.
- [3] M. A. Dmitrienko, G. S. Nyashina, and P. A. Strizhak (2017). Environmental indicators of the combustion of prospective coal water slurry containing petrochemicals, J Hazard Mater, 338, 148-159, doi: 10.1016/j.jhazmat.2017.05.031.
- [4] Z. Zakaria, M. A. Mohd Ishak, M. F. Abdullah, and K. Ismail, (2010). Thermal Decomposition Study of Coals, Rice Husk, Rice Husk Char and Their Blends During Pyrolysis and Combustion via Thermogravimetric Analysis, International Journal of Chemical Technology, 2(3), 78-87. doi: 10.3923/ijct.2010.78.87.
- [5] C. Wang, F. Wang, Q. Yang, and R. Liang (2009). Thermogravimetric studies of the behavior of wheat straw with added coal during combustion, Biomass Bioenergy, 33(1), 50-56. doi: 10.1016/j.biombioe.2008.04.013.
- [6] M. Tauseef et al., (2022). Thermokinetics synergistic effects on co-pyrolysis of coal and rice husk blends for bioenergy production, Fuel, 318(1). doi: 10.1016/j.fuel.2022.123685.
- [7] U. Aslam, N. Ramzan, T. Iqbal, M. Kazmi, and A. Ikhlaq, (2016). Effect of demineralization on the physiochemical structure and thermal degradation of acid treated indigenous rice husk. Polish Journal of Chemical Technology, 18(3), 117-121. doi: 10.1515/pjct-2016-0057.
- [8] L. Luduena, D. Fasce, V. A. Alvarez, and P. M. Stefani, (2011). Nanocellulose from rice husk.
- [9] S. M. L. Rosa, N. Rehman, M. I. G. De Miranda, S. M. B. Nachtigall, and C. I. D. Bica, (2012). Chlorine- free extraction of cellulose from rice husk and whisker isolation, Carbohydr Polym, 87(2), 1131-1138. doi: 10.1016/j.carbpol.2011.08.084.
- [10] H. B. Vuthaluru, (2004). Thermal behaviour of coal/biomass blends during co-pyrolysis, Fuel Processing Technology, 85(2-3), 141-155. doi: 10.1016/S0378-3820(03)00112-7.
- [11] K. Jayaraman, MV. Kok, I. Gokalp. (2017). Thermogravimetric and mass spectrometric (TG-MS) analysis and kinetics of blends. Renewable energy, 101, 293-300. doi: 10.1016/j.renene.2016.08.072
- [12] K. Jayaraman and I. Gokalp, (2015). Pyrolysis, combustion and gasification characteristics of miscanthus and sewage sludge, Energy Convers Manag, 89, 83-91. doi: 10.1016/j.enconman.2014.09.058.
- [13] H. E. Kissinger, (1956). Reaction Kinetics in Differential Thermal Analysis. [Online]. Available: https://pubs.acs.org/sharingguidelines
- [14] C. D. Doyle, (1961). Kinetic analysis of thermogravimetric data, JAppl Polym Sci, 5(15), 285-292. doi: 10.1002/app.1961.070051506.
- [15] Y. F. Huang, W. H. Kuan, P. T. Chiueh, and S. L. Lo, (2011). A sequential method to analyze the kinetics of biomass pyrolysis, Bioresour Technol, 102(19), 9241-9246. doi: 10.1016/j.biortech.2011.07.015.
- [16] S. Ceylan and Y. Topçu, (2014). Pyrolysis kinetics of hazelnut husk using thermogravimetric analysis, Bioresour Technol, 156, 182-188. doi: 10.1016/j.biortech.2014.01.040.
- [17] A. K. Burnham, (1999). Global kinetic analysis of complex materials, Energy and Fuels, 13(1), 1-22. doi: 10.1021/ef9800765.
- [18] A. Ortega, (2008). A simple and precise linear integral method for isoconversional data, Thermochimica Acta, 474(1-2), 81-86. doi: 10.1016/j.tca.2008.05.003
- [19] A. Demirbas, (2004). Effects of temperature and particle size on bio-char yield from pyrolysis of agricultural residues, J Anal Appl Pyrolysis, 72(2), 243-248, doi: 10.1016/j.jaap.2004.07.003.
- [20] D. Kazawadi, G. R. John, and C. K. King’ondu, (2014). Experimental Investigation of Thermal Characteristics of Kiwira Coal Waste with Rice Husk Blends for Gasification, Journal of Energy, 2014, 1-8, doi: 10.1155/2014/562382.
- [21] D. K. W Gan et al., (2018). Kinetics and thermodynamic analysis in one-pot pyrolysis of rice hull using renewable calcium oxide based catalysts, Bioresour Technol, 265, 180-190. doi: 10.1016/j.biortech.2018.06.003.
- [22] M. Asadieraghi and W M. A. Wan Daud, (2015). Insitu catalytic upgrading of biomass pyrolysis vapor: Using a cascade system of various catalysts in a multizone fixed bed reactor, Energy Convers Manag, 101, 151-163. doi: 10.1016/j.enconman.2015.05.008.
- [23] M. Brebu and C. Vasile, (2010). Thermal degradation of lignin-a review.
- [24] J. Zhang, T. Chen, J. Wu, and J. Wu, (2014). Multi- Gaussian-DAEM-reaction model for thermal decompositions of cellulose, hemicellulose and lignin: Comparison of N2 and CO2 atmosphere, Bioresour Technol, 166, 87-95. doi: 10.1016/j.biortech.2014.05.030.
- [25] A. Bhagavatula, G. Huffman, N. Shah, and R. Honaker, (2014). Evaluation of Thermal Evolution Profiles and Estimation of Kinetic Parameters for Pyrolysis of Coal/Corn Stover Blends Using Thermogravimetric Analysis, Journal of Fuels, 1-12, doi: 10.1155/2014/914856.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9968a80a-fe23-4aef-b37f-b472720fba61
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.