PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Decomposition of palladium acetate and C60 fullerite during thermal evaporation in PVD process

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The mechanisms of thermal decomposition of evaporated material during Physical Vapor Deposition (PVD) process depend on the kind of evaporated material. Such parameters of PVD process as deposition rate, source temperature and deposition time should be carefully selected taking into account the properties of material. Deposited films can span the range of chemical compositions based on the source materials. The nanostructural carbon films in form of palladium nanograins embedded in various carbonaceous matrixes were obtained by thermal evaporation during PVD process from two separated sources containing C60 fullerite and palladium acetate, both in a form of powder. The evaporation was realized by resistive heating of sources under a dynamic vacuum of 10−3 Pa. The influence of decomposition path of evaporated materials on the film structure has been discussed. Prepared C-Pd films were characterized using thermo-gravimetric method, differential thermal analysis, infrared spectroscopy and X-ray diffraction. The influence of decomposition of Pd acetate and fullerite on the final film structure was also shown.
Słowa kluczowe
Wydawca
Rocznik
Strony
594--600
Opis fizyczny
Bibliogr. 16 poz., rys., tab.
Twórcy
autor
  • Tele and Radio Research Institute, Ratuszowa 11, 03-450 Warsaw, Poland
autor
  • Tele and Radio Research Institute, Ratuszowa 11, 03-450 Warsaw, Poland
autor
  • Tele and Radio Research Institute, Ratuszowa 11, 03-450 Warsaw, Poland
  • Tele and Radio Research Institute, Ratuszowa 11, 03-450 Warsaw, Poland
Bibliografia
  • [1] MATTOX D.M., Handbook of Physical Vapor Deposition (PVD) processing, Elsevier Ltd., Oxford, 2010.
  • [2] BUNSHAH R.F., Handbook of Deposition Technologies for Films and Coatings: Science, Technology and Applications, Park Ridge, New York, 1994.
  • [3] HELMERSSON U., LATTEMANN M., BOHLMARK J., EHIASARIAN A.P., GUDMUNDSSON J.T., Thin Solid Films, 513 (2006), 1.
  • [4] SELVAKUMAR N., BARSHILIA H.C., Sol. Energ. Mat. Sol. C., 98 (2012), 1.
  • [5] LILJEHOLM L., Reactive Sputter Deposition of Functional Thin Films, Acta Universitatis Upsaliensis, Uppsala, Sweden, 2012.
  • [6] KADISH K.M., D’SOUZA F., Handbook of Carbon Nano Materials. Volume 7, Synthetic Developments of Graphene and Nanotubes, World Scientific Publishing Co., Singapore, 2015.
  • [7] ECHEGOYEN L., ECHEGOYEN L.E., Acc. Chem. Res., 31 (1998), 593.
  • [8] BRANCEWICZ E., GRĄDZKA E.,WINKLER K., J. Solid State Electrochem., 17 (2013), 1233.
  • [9] BALCH A.L., OLMSTEAD M.M., Chem. Rev., 98 (1998), 2123.
  • [10] WINKLER K., BALCH A.L., KUTNER W., J. Solid State Electrochem., 10 (2006), 761.
  • [11] CZERWOSZ E., DŁUŻEWSKI P., KOWALSKA E., KOZŁOWSKI M., RYMARCZYK J., Phys. Status Solidi C, 7 8 (2011), 2527.
  • [12] RYMARCZYK J., KAMIŃSKA A., KĘZKOWSKA J., KOZŁOWSKI M., CZERWOSZ E., Opt. Appl., 43 (2013), 123.
  • [13] BOUCHAT V., FERON O., GALLEZ B., MASEREEL B., MICHIELS C., VAN DER BORGHT T., LUCAS S., Surf. Coat. Tech., 205 (2011), S577.
  • [14] RYMARCZYK J., CZERWOSZ E., KOZŁOWSKI M., DŁUŻEWSKI P., KOWALSKI W., Pol. J. Chem. Technol., 16 (2014), 18.
  • [15] RYMARCZYK J., CZERWOSZ E., RICHTER A., Cent. Eur. J. Phys., 9 (2011), 300.
  • [16] GALLAGHER P.K., GROSS M.E., J. Therm. Anal., 31 (1986), 1231.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9965ad37-4b2d-46cb-a9f8-f3818a59285a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.