PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Load Self-Sensing Control Scheme for Telemanipulation - Part 2: Experiment

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Układ sterowania samowyznaczający obciążenie dedykowany dla zdalnej manipulacji - część 2: eksperyment
Języki publikacji
EN
Abstrakty
EN
The paper presents a novel approach to a control design of bilateral teleoperation systems with force-feedback, dedicated only for a weight sensing. The problem statement, analysis of papers up to date, and the scope of the study are presented. The new control unit for a master-slave system with force-feedback was based on a NARX model. The model was used to subtract a value of force in the force-feedback communication channel that the system might generate during free-motion. The new approach to a control design was validated on a test-stand of a simple rotating pneumatic manipulator arm. The paper presents the modeling procedure of the experimental setup and the model used in the study. Two experiments are described to demonstrate the control unit of the master-slave system with force-feedback.
PL
W artykule przedstawiono podejście do projektowania sterowania dwustronnych systemów zdalnej operacji ze sprzężeniem zwrotnym, przeznaczonym wyłącznie do wykrywania obciążenia. Opis problemu, analiza dotychczasowych osiągnięć badawczych oraz zakres badania zostały zawarte w pracy. Nowy projekt jednostki sterującej dla systemu Master-Slave z siłowym sprzężeniem zwrotnym oparty został na modelu NARX. Model został użyty do odejmowania wartości siły w kanale komunikacyjnym sprzężenia zwrotnego, który jest generowany przez system podczas ruchu swobodnego. Efektywność działania nowego podejścia została potwierdzone na prostym pneumatycznym stanowisku badawczym obrotowego ramienia manipulatora. W pracy przedstawiono procedurę modelowania i konfiguracji eksperymentalnej, a także model zastosowany w układzie sterowania. Opisane są dwa eksperymenty przeprowadzone na układzie sterowania systemu masterslave z siłowym sprzężeniem zwrotnym.
Rocznik
Strony
25--30
Opis fizyczny
Bibliogr. 39 poz., rys., wykr.
Twórcy
autor
  • West Pomeranian University of Technology, Faculty of Mechanical Engineering and Mechatronics, 19 Piastów Av., 70-310 Szczecin
  • West Pomeranian University of Technology, Faculty of Mechanical Engineering and Mechatronics, 19 Piastów Av., 70-310 Szczecin
Bibliografia
  • 1. Ben-Dov D., Salcudean S.E., A force-controlled pneumatic actuator for use in teleoperation masters, [in:] Proceedings of 1993 IEEE International Conference on Robotics and Automation, 938-943, DOI: 10.1109/ROBOT.1993.292264.
  • 2. Ferrell W.R., Delayed Force Feedback, “Human Factors: The Journal of the Human Factors and Ergonomics Society”, Vol. 8, No. 5, 1966, 449-455, DOI: 10.1177/001872086600800509.
  • 3. Guerriero B., Book W., Haptic Feedback Applied to Pneumatic Walking, ASME 2008 Dynamic Systems and Control Conference, American Society of Mechanical Engineers, 591-597, DOI: 10.1115/DSCC2008-2185.
  • 4. Hannaford B., Stability and performance tradeoffs in bi-lateral telemanipulation, [in:] Proceedings of 1989 IEEE International Conference on Robotics and Automation, Vol. 1763, 1764-1767, DOI: 10.1109/ROBOT.1989.100230.
  • 5. Hastrudi-Zaad K., Salcudean S.E., On the use of local force feedback for transparent teleoperation, [in:] Proceedings of 1999 IEEE International Conference on Robotics and Automation, Vol. 1863, 1863-1869, DOI: 10.1109/ROBOT.1999.770380.
  • 6. Hogan N., Impedance Control: An Approach to Manipulation: Part II - Implementation, “Journal of Dynamic Systems, Measurement, and Control”, Vol. 107, No. 1, 1985, 8-16, DOI: 10.1115/1.3140713.
  • 7. Kim W.S., Developments of new force reflecting control schemes and an application to a teleoperation training simulator, [in:] Proceedings of 1992 IEEE International Conference on Robotics and Automation, Vol. 1412, 1992, 1412-1419, DOI: 10.1109/ROBOT.1992.220152.
  • 8. Kim W.S., Hannaford B., Fejczy A.K., Force-reflection and shared compliant control in operating telemanipulators with time delay, “IEEE Transactions on Robotics and Automation”, Vol. 8, No. 2, 1992, 176-185, DOI: 10.1109/70.134272.
  • 9. Miądlicki K., Pajor M., Overview of user interfaces used in load lifting devices, “International Journal of Scientific & Engineering Research”, Vol. 6, No. 9, 2015, 1215-1220.
  • 10. Miądlicki K., Pajor M., Real-time gesture control of a CNC machine tool with the use Microsoft Kinect sensor, “International Journal of Scientific & Engineering Research”, Vol. 6, No. 9, 2015, 538-543.
  • 11. Miadlicki K., Pajor M., Sakow M., Loader Crane Working Area Monitoring System Based on LIDAR Scanner, “Advances in Manufacturing”, Springer, 2018, 465-474, DOI: 10.1007/978-3-319-68619-6_45.
  • 12. Miądlicki K., Pajor M., Saków M., Ground plane estimation from sparse LIDAR data for loader crane sensor fusion system, 22nd International Conference on Methods and Models in Automation and Robotics (MMAR), IEEE, Międzyzdroje, Poland, 2017, 717-722, DOI: 10.1109/MMAR.2017.8046916.
  • 13. Miądlicki K., Pajor M., Saków M., Real-time ground filtration method for a loader crane environment monitoring system using sparse LIDAR data, 2017 IEEE International Conference on INnovations in Intelligent SysTems and Applications (INISTA), IEEE, 2017, 207-212, 10.1109/INISTA.2017.8001158.
  • 14. Miądlicki K., Saków M., The use of machine vision to control the basic functions of a CNC machine tool using gestures, Czasopismo Techniczne, Vol. 12, 2017, 213-229, DOI: 10.4467/2353737XCT.17.221.7764.
  • 15. Najdovski Z., Nahavandi S., Fukuda T., Design, Development, and Evaluation of a Pinch-Grasp Haptic Interface, IEEE/ASME Transactions on Mechatronics, Vol. 19, No. 1, 2014, 45-54, DOI: 10.1109/TMECH.2012.2218662.
  • 16. Nguyen T., Leavitt J., Jabbari F., Bobrow J.E., Accurate Sliding-Mode Control of Pneumatic Systems Using Low-Cost Solenoid Valves, IEEE/ASME Transactions on Mechatronics, Vol. 12, No. 2, 2007, 216-219, DOI: 10.1109/TMECH.2007.892821.
  • 17. Ningbo Y., Hollnagel C., Blickenstorfer A., Kollias S.S., Riener R., Comparison of MRI-Compatible Mechatronic Systems With Hydrodynamic and Pneumatic Actuation, IEEE/ASME Transactions on Mechatronics, Vol. 13, No. 3, 2008, 268-277, DOI: 10.1109/TMECH.2008.924041.
  • 18. Noritsugu T., Pulse-width modulated feedback force control of a pneumatically powered robot hand, International Symposium of Fluid Control and Measurement, Tokyo, 1985, 47-52.
  • 19. Pajor M., Miądlicki K., Saków M., Kinect Sensor Implementation in Fanuc Robot Manipulation, “Archives of Mechanical Technology and Automation”, Vol. 34, No. 3, 2014, 35-44.
  • 20. Polushin I.G., Takhmar A., Patel R.V., Projection-Based Force-Reflection Algorithms With Frequency Separation for Bilateral Teleoperation, IEEE/ASME Transactions on Mechatronics, Vol. 20, No. 1, 2015, 143-154, DOI: 10.1109/TMECH.2014.2307334.
  • 21. Saków M., Marchelek K., Parus A., Miądlicki K., Control scheme without force sensors for load sensing in telemanipulation systems with force-feedback, “Journal of Machine Construction and Maintenance. Problemy Eksploatacji”, No. 3, 2017, 21-30.
  • 22. Saków M., Miądlicki K., Parus A., Self-sensing teleoperation system based on 1-dof pneumatic manipulator, “Journal of Automation, Mobile Robotics and Intelligent Systems”, Vol. 11, No. 1, 2017, 64-76.
  • 23. Saków M., Pajor M., Parus A., Estimation of environmental forces impact on remote control system with force-feedback and upper limb kinematics (in Polish), “Modelowanie Inżynierskie”, Vol. 27, No. 58, 2016, 113-122.
  • 24. Saków M., Pajor M., Parus A., Self-sensing control system determining the environmental force influence on the manipulator during the operation of the telemanipulation system (in Polish), “Projektowanie Mechatroniczne - Zagadnienia Wybrane”, Katedra Robotyki i Mechatroniki, Akademia Górniczo-Hutnicza w Krakowie, 2016, 139-150.
  • 25. Saków M., Parus A., Sensorless control scheme for teleoperation with force-feedback, based on a hydraulic servo-mechanism, theory and experiment, “Measurement Automation Monitoring”, Vol. 62, No. 12, 2016, 417-425.
  • 26. Saków M., Parus A., Miądlicki K., Predictive method of force determination in the force-feedback communication channel of remotely controlled system (in Polish), “Modelowanie inżynierskie”, Vol. 31, No. 62, 2017, 88-97.
  • 27. Sakow M., Parus A., Pajor M., Miadlicki K., Unilateral Hydraulic Telemanipulation System for Operation in Machining Work Area, Advances in Manufacturing, Springer, 2018, 415-425, DOI: 10.1007/978-3-319-68619-6_40.
  • 28. Saków M., Parus A., Pajor M., Miądlicki K., Nonlinear inverse modeling with signal prediction in bilateral teleoperation with force-feedback, 2017 22nd International Conference on Methods and Models in Automation and Robotics (MMAR), IEEE, Międzyzdroje, Poland, 2017, 141-146, DOI: 10.1109/MMAR.2017.8046813.
  • 29. Seraji H., Colbaugh R., Adaptive force-based impedance control, IROS ‘93. Proceedings of the 1993 IEEE/RSJ International Conference on Intelligent Robots and Systems, 1993, Vol. 1533, 1537-1544, DOI: 10.1109/IROS.1993.583844.
  • 30. Seul J., Hsia T.C., Bonitz R.G., Force tracking impedance control of robot manipulators under unknown environment, “IEEE Transactions on Control Systems Technology”, Vol. 12, No. 3, 2004, 474-483, DOI: 10.1109/TCST.2004.824320.
  • 31. Stateczny K., Pajor M., Miadlicki K., Sakow M., MEMS based system for controlling and programing industrial manipulator Fanuc s-420F using gestures, “Problemy Eksploatacji”, 4/2017, 107, 81-89.
  • 32. Stuart K.D., Majewski M., Intelligent Opinion Mining and Sentiment Analysis Using Artificial Neural Networks, International Conference on Neural Information Processing, Springer, Istanbul, Turkey, 2015, 103-110, DOI: 10.1007/978-3-319-26561-2_13.
  • 33. Stuart K.D., Majewski M., Trelis A.B., Intelligent semantic-based system for corpus analysis through hybrid probabilistic neural networks, International Symposium on Neural Networks, Springer, 2011, 83-92, DOI: 10.1007/978-3-642-21105-8_11.
  • 34. Tadano K., Kawashima K., Development of 4-DOFs forceps with force sensing using pneumatic servo system, Proceedings 2006 IEEE International Conference on Robotics and Automation, ICRA 2006, 2250-2255, DOI: 10.1109/ROBOT.2006.1642038.
  • 35. Taghizadeh M., Ghaffari A., Najafi F., Improving dynamic performances of PWM-driven servo-pneumatic systems via a novel pneumatic circuit, “ISA Transactions”, Vol. 48, No. 4, 2009, 512-518, DOI: 10.1016/j.isatra.2009.05.001.
  • 36. Yokokohji Y., Yoshikawa T., Bilateral control of master-slave manipulators for ideal kinesthetic coupling-formulation and experiment, IEEE Transactions on Robotics and Automation, Vol. 10, No. 5, 1994, 605-620, DOI: 10.1109/70.326566.
  • 37. Yong Z., Barth E.J., Impedance Control of a Pneumatic Actuator for Contact Tasks, Proceedings of the 2005 IEEE International Conference on Robotics and Automation, 2005, 987-992, DOI: 10.1109/ROBOT.2005.1570245.
  • 38. Zhang T., Jiang L., Wu X., Feng W., Zhou D., Liu H., Fingertip Three-Axis Tactile Sensor for Multifingered Grasping, “IEEE/ASME Transactions on Mechatronics”, Vol. 20, No. 4, 2014, 1875-1885, DOI: 10.1109/TMECH.2014.2357793.
  • 39. Zhou M., Ben-Tzvi P., RML Glove - An Exoskeleton Glove Mechanism With Haptics Feedback, IEEE/ASME Transactions on Mechatronics, Vol. 20, No. 2, 2015, 641-652, DOI: 10.1109/TMECH.2014.2305842.
Uwagi
EN
The work was carried out as part of PBS3/A6/28/2015. “The use of augmented reality, interactive voice systems and operator interface to control a crane”, which was financed by NCBiR.
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-99610e45-5aad-4930-95bf-98767968bfdb
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.