PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Realization of optical fibers terminated with ball lenses

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this article the process of realization of ball-lensed optical fibers is described. The implementation of four different types of ball-lensed optical fibers developed in Optical Fibers Techniques Laboratory at Lodz University of Technology is presented. Focal lengths of the presented microlenses, which were obtained in simulations and measurements, are also shown in this paper.
Rocznik
Strony
279--282
Opis fizyczny
Bibliogr. 29 poz., rys., fot., tab.
Twórcy
autor
  • Technical University of Lodz, Dept. of Semiconductor and Optoelectronics Devices, 211/215 Wolczanska St., 90-924 Lodz, Poland
autor
  • Technical University of Lodz, Dept. of Semiconductor and Optoelectronics Devices, 211/215 Wolczanska St., 90-924 Lodz, Poland
autor
  • Technical University of Lodz, Dept. of Semiconductor and Optoelectronics Devices, 211/215 Wolczanska St., 90-924 Lodz, Poland
Bibliografia
  • [1] Y. Takagi, A. Suzuki, T. Horio, T. Ohno, T. Kojima, T. Takada, S. Iio, K. Obayashi, M. Okuyama, “4-Ch × 10-Gb/s Chip-to- Chip Optical Interconnections With Optoelectronic Packages and Optical Waveguide Separated From PCB”, CPMT Symposium Japan, ISBN: 978‒1-4244‒7593‒3, 1-4 (2010).
  • [2] J-S. Youn., M-J. Lee, K-Y Park, W-Y Choi., “10-Gb/s 850-nm CMOS OEIC Receiver with a Silicon Avalanche Photodetector”, J. Qantum Electronics, 48 (2), 229-236 (2012).
  • [3] J. Sakai, A. Noda, M. Yamagishi, T. Ohtsuka, K. Sunaga, H. Sugita, H. Takahashi, M. Oda, H. Ono, K. Yashiki, H. Kouta, “20Gbps/ch Optical Interconnection between SERDES Devices over Distances from Chip-to-Chip to Rack-to-Rack”, European Conf. on Optical Communication ECOC 2008, ISBN:978‒1-4244‒2227‒2, 1-2 (2008).
  • [4] B. Moore, C. Sellathamby, S. Slupsky, K. Iniewski, “Chip to Chip Communications for Terabit Transmission Rates”, Asia Pacific Conf. on Circuits and Systems APCCAS, ISBN:978‒1-4244‒2341‒5, 1558-1561 (2008).
  • [5] D.J. Lockwood, L. Pavesi,“Silicon Photonics II Components and Integration”, Topics in App. Phys., 119, 75-77 (2011).
  • [6] S. Stopiński, M. Malinowski., R. Piramidowicz, M.K. Smit, X.J.M. Leijtens, “Data readout system utilizing photonic integrated circuit”, Nucl. Instrum. Methods Phys. Res. A, 725, 183-186 (2013).
  • [7] M.C. Gupta, J. Ballato, The Handbook of Photonics, Second Edition, CRC Press, 2007
  • [8] M.S. Bakir, J.D. Meindl, Integrated Interconnect Technologies for 3D Nanoelectronic Systems, Artech House (2009).
  • [9] A.K. Goel, High-Speed VLSI Interconnections, IEEE Press, John Wiley & Sons, (2007).
  • [10] A.G. Kirk, D.V. Plant, M.H. Ayliffe, M. Chateauneuf, F. Lacroix, “Design rules for highly parallel free-Space optical Interconnects”, IEEE J. Selected Topics in Quantum Electronics, 9 (2), 531-547 (2003).
  • [11] A. Tuantranont, V.M. Bright, J. Zhang, W. Zhang, J.A. Neff, Y.C. Lee, “Optical beam steering using MEMS-controllable microlens array”, Sensors and Actuators A-Physical 91 (3), 363-372 (2001).
  • [12] E. Bisaillon, D. F. Brosseau, T. Yamamoto, M. Mony, E. Bernier, D. Goodwill, D. V. Plant, and A. G. Kirk, “Free-space optical link with spatial redundancy for misalignment tolerance”, Photon. Techn. Lett., 14 (2), 242-244 (2002).
  • [13] G. Guzowski, Z. Lisik, G. Tosik, E. Ciupa, “OM4 bend insensitive multi-mode fibers’ usefulness for MCM integration”, Mat. Scien. and Engi. B, 177, 1367-1372 (2012).
  • [14] B. Dhoedt, R. Baets, P. Van Daele, P. Heremans, J. Van Campenhout, J. Hall, R. Michalzik, A. Schmid, H. Thienpont, R. Vounckx, A. Neyer, D.C. O’Brien, J. Van Koetsem “Optically interconnected integrated circuits to solve the CMOS interconnect bottleneck”, IEEE Conf. Electronic Components and Technology, 992-998 (1998).
  • [15] S. Lis, R. Dylewicz, J. Myśliwiec, A. Miniewicz, S. Patela, “Application of flowable oxides in photonics”, Materials Science- Poland, 26 (1), 189-194 (2008).
  • [16] X. Zhang X., H. Lu, A.M. Soutar. “Development of Planar Optical Waveguides using UV-Patternable Hybrid Sol-gel Coating”, Simtech Technical Report (2003).
  • [17] R.S. Romaniuk, “Instrumentation optical fibres for wave transformation, signal processing, sensors, and photonic functional components, manufactured at Białystok University of Technology in Dorosz Fibre Optics Laboratory”, Bull. Pol. Ac.: Tech., 62 (4), 607-618 (2014).
  • [18] Y. Ishii, S. Koike, Y. Arai, Y. Ando, “SMT-Compatible Large-Tolerance “OptoBump” Interface for Interchip Optical Interconnections”, IEEE Transactions On Advanced Packaging, 26 (2), 122-127 (2003).
  • [19] A. Kern, S. Paul, D. Wahl, A. Hein, R. Rosch, W. Schwarz, R. Michalzik, “6 Gbit/s Full-Duplex Multimode Fiber Link with Monolithic VCSEL-PIN Transceiver Chips”, ECOC Technical Digest, 1-3 (2011).
  • [20] Y. Urino, T. Shimizu, M. Okano, N. Hatori, M. Ishizaka, T. Yamamoto, T. Baba, T. Akagawa, S. Akiyama, T. Usuki, D. Okamoto, M. Miura, M. Noguchi, J. Fujikata, D. Shimura, H. Okayama, T. Tsuchizawa, T. Watanabe, K. Yamada, S. Itabashi, E. Saito, T. Nakamura, Y. Arakawa,“First Demonstration of High Density Optical Interconnects Integrated with Lasers, Optical Modulators and Photodetectors on a Single Silicon Substrate”, ECOC Technical Digest, 1-3 (2011).
  • [21] L. Brusberg, H. Schroder, M. Queisser, K-D. Lang, “Single-mode Glass Waveguide Platform for DWDM Chip-to-Chip Interconnects”, 62nd Electronic Components and Technology Conference (ECTC), 1532‒1539 (2012).
  • [22] F. Schwierz, “Graphene transistors”, Nature nanotechnology 5, 487‒496 (2010).
  • [23] T. Osuch, P. Gasior, K. Markowski, K. Jedrzejewski, “Development of fiber Bragg gratings technology and their complex structures for sensing, telecommunications and microwave photonics applications”, Bull. Pol. Ac.: Tech., 62 (4), 627-633 (2014).
  • [24] J. Tong, A. Liu, H. Lv, X. Yi, Q. Li, X. Wang, Y. Ding., “Performances Comparison of Ball Lenses Having Gradient Refractive Index Distribution and Homogeneous Medium”, I Symposium on Photonics and Optoelectronic (SOPO), 1-4 (2010).
  • [25] Y-H. Huang, C-C. Yang, T-C. Peng, F-Y. Cheng, M-C. Wu, Y-T. Tsai, C-L. Ho, I-M. Liu, C-C. Hong, C-C. Lin et al., “10-Gb/s InGaAs p-i-n Photodiodes With Wide Spectral Range and Enhanced Visible Spectral Response”, Photon. Tech. Lett., 19 (5), 339-341 (2007).
  • [26] F.E. Doany, C.L. Schow, C.W. Baks, D.M. Kuchta, P. Pepeljugoski, L. Schares, R. Budd, F. Libsch, R. Dangel, F. Horst, B.J. Offrein, J.A. Kash, “160 Gb/s Bidirectional Polymer-Waveguide Board-Level Optical Interconnects Using CMOS-Based Transceivers”, Transactions On Advanced Packaging, 32 (2), 345-359 (2009).
  • [27] MXC Press Release, “MXC multi-fiber optical interconnect platform: New, ultra-high density, connector hardware design compatible with PRIZM® MT expanded beam ferrules”, (2014).
  • [28] J.C. Baker, D.N. Payne, “Expanded-beam connector design study”, Appl. Optics, 20, 2861 (1981).
  • [29] Lambda Research website (OSLO EDU software): http://secure.lambdares.com/education/oslo_edu/ (access 24.10.2104).
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-99604242-31f2-40e7-b071-9316eb971cf3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.