PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Experimental investigation of the electrochemical micromachining process of Ti-6Al-4V titanium alloy under the influence of magnetic field

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
An attempt has been made to study the influence of magnetic field on the micro hole machining of Ti-6Al-4V titanium alloy using electrochemical micromachining (ECMM) process. The presence of magneto hydro dynamics (MHD) is accomplished with the aid of external magnetic field (neodymium magnets) in order to improve the machining accuracy and the performance characteristics of ECMM. Close to ideal solution for magnetic and nonmagnetic field ECMM process, the parameters used are as follows: concentration electrolyte of 15 g/l; peak current of 1.35 A; pulse on time of 400 s; and duty factor of 0.5. An improvement of 11.91–52.43% and 23.51–129.68% in material removal rate (MRR) and 6.03–21.47% and 18.32–33.09% in overcut (OC) is observed in ECMM of titanium alloy under the influence of attraction and repulsion magnetic field, respectively, in correlation with nonmagnetic field ECMM process. A 55.34% surface roughness factor reduction is ascertained in the hole profile in magnetic field-ECMM in correlation with electrochemical machined titanium alloy under nonmagnetic field environment. No machining related stress is induced in the titanium alloy, even though environment of electrochemical machining process has been enhanced with the presence of magnetic field. A slight surge in the compressive residual factor, aids in surge of passivation potential of titanium alloy, resulting in higher resistance to outside environment.
Słowa kluczowe
Wydawca
Rocznik
Strony
124--138
Opis fizyczny
Bibliogr. 34 poz., rys., tab.
Twórcy
  • Department of Mechanical Engineering, College of Engineering Guindy, Anna University, Chennai, India, 600025
autor
  • Department of Mechanical Engineering, College of Engineering Guindy, Anna University, Chennai 600 025, India
  • Indian Institute of Information Technology Design and Manufacturing (IIITDM) Kurnool, Andhra Pradesh 518 007, India (Institute of National Importance under Ministry of Education, Govt. of India)
  • University of Texas at Arlington, USA, 76019
Bibliografia
  • [1] Sorkhel SK, Bhattacharyya B. Parametric control for optimal quality of the workpiece surface in ECM. J Mater Process Technol. 1994;40(3–4):271–86.
  • [2] Borchers F, Clausen B, Eckert S, Ehle L, Epp J, Harst S, et al. Comparison of different manufacturing processes of AISI 4140 steel with regard to surface modification and its influencing depth. Metals. 2020;10(7):895.
  • [3] Sen M, Shan HS. A review of electrochemical macro-to micro-hole drilling processes. Int J Mach Tools Manuf. 2005;45(2):137–52.
  • [4] Rosenkranz C, Lohrengel MM, Schultze JW. The surface structure during pulsed ECM of iron in NaNO3. Electrochim Acta. 2005;50(10):2009–16.
  • [5] De Silva AKM, Altena HSJ, McGeough JA. Precision ECM by process characteristic modelling. CIRP Annals. 2000;49(1):151–5.
  • [6] El-Hofy H. Vibration-assisted electrochemical machining: a review. Int J Adv Manuf Technol. 2019;105(1–4):579–93.
  • [7] Shin HS, Kim BH, Chu CN. Analysis of the side gap resulting from micro electrochemical machining with a tungsten wire and ultrashort voltage pulses. J Micromech Microeng. 2008;18(7):075009.
  • [8] Eylon DSPJ, Fujishiro S, Postans PJ, Froes FH. High-temperature titanium alloys – a review. JOM.1984;36(11):55–62.
  • [9] Bhattacharyya B, Munda J, Malapati M. Advancement in electrochemical micro-machining. Int J Mach Tools Manuf. 2004;44(15):1577–89.
  • [10] Patel DS, Sharma V, Jain VK, Ramkumar J. Reducing overcut in electrochemical micromachining process by altering the energy of voltage pulse using sinusoidal and triangular waveform. Int J Mach Tools Manuf. 2020;151:103526.
  • [11] Malik A, Manna A. Investigation on the laser-assisted jet electrochemical machining process for improvement in machining performance. Int J Adv Manuf Technol. 2018;96(9):3917–32.
  • [12] Zhang Z, Zhang Y, Ming W, Zhang Y, Cao C, Zhang G. A review on magnetic field assisted electrical discharge machining. J Manuf Process. 2021;64:694–722.
  • [13] Wang Z, Sun L, Ke W, Zeng Z, Yao W, Wang C. Laser oscillating welding of TC31 high-temperature titanium alloy. Metals. 2020;10(9):1185.
  • [14] Oke SR, Ogunwande GS, Onifade M, Aikulola E, Adewale ED, Olawale OE, et al. An overview of conventional and non-conventional techniques for machining of titanium alloys. Manuf Rev. 2020;7:34.
  • [15] Zhang X, Zhang J, Chen F, Yang Z, He J. Characteristics of resistance spot welded Ti6Al4V titanium alloy sheets. Metals. 2017;7(10):424.
  • [16] Pradeep N, Sundaram KS, Pradeep Kumar M. Performance investigation of variant polymer graphite electrodes used in electrochemical micromachining of ASTM A240 grade 304. Mater Manuf Process. 2020;35(1):72–85.
  • [17] Mouliprasanth B, Hariharan P. Measurement of performance and geometrical features in electrochemical micromachining of SS304 alloy. Exp Tech. 2020;44:259–73.
  • [18] Hariharan K, Chandrasekhara Sastry C, Padmanaban M, Gideon Ganesh M. Experimental investigation of bioceramic (Hydroxyapatite and Yttrium stabilized zirconia) composite on Ti6Al7Nb alloy for medical implants. Mater Manuf Process. 2020;35(1):521–530.
  • [19] Rønold HJ, Ellingsen JE. Effect of micro-roughness produced by TiO2 blasting–tensile testing of bone attachment by using coin-shaped implants. Biomaterials. 2002;23(21):4211–9.
  • [20] Dhobe SD, Doloi B, Bhattacharyya B. Surface characteristics of ECMed titanium work samples for biomedical applications. Int J Adv Manuf Technol. 2011;55(1–4):177–88.
  • [21] Lu X, Leng Y. Electrochemical micromachining of titanium surfaces for biomedical applications. J Mater Process Technol. 2005;169(2):173–8.
  • [22] Altena HS. EDM and ECM for mass production Philips DAP. J Mater Process Technol. 2004;149(1–3):18–21.
  • [23] Hinds G, Spada FE, Coey JMD, Ní Mhíocháin TR, Lyons MEG. Magnetic field effects on copper electrolysis. J Phys Chem B. 2001;105(39):9487–502.
  • [24] Fahidy TZ. Magnetoelectrolysis. J Appl Electrochem. 1983;13(5):553–63.
  • [25] Mohanta S, Fahidy TZ. The hydrodynamics of a magnetoelectrolytic cell. J Appl Electrochem. 1976;6(3):211–20.
  • [26] Long L, Baoji MA. Effect of magnetic field on anodic dissolution in electrochemical machining. Int J Adv Manuf Technol. 2018;94(1–4):1177–1187.
  • [27] Chandrasekhara Sastry C, Hariharan P, Pradeep Kumar M. Experimental investigation of dry, wet and cryogenic boring of AA 7075 alloy. Mater Manuf Process. 2019;34(7): 814–831.
  • [28] Chandrasekhara Sastry C, Hariharan P, Pradeep Kumar M, Muthu Manickam MA. Experimental investigation on boring of HSLA ASTM A36 steel under dry, wet and cryogenic boring environments. Mater Manuf Process. 2019;34(12):1352–79.
  • [29] Goutham Murari VP, Selvakumar G, Chandrasekhara CS. Experimental investigation of wire-EDM machining of low conductive Al-SiC-TiC metal matrix composite. Metals. 2020;10(9):1188.
  • [30] Chandrasekhara Sastry C, Gokulakrishnan K, Hariharan P, Pradeep Kumar M, Boopathy SR. Investigation of boring on gunmetal in dry, wet and cryogenic conditions. J Braz Soc Mech Sci Eng. 2020;42(1):16.
  • [31] Rajamanickam S, Prasanna J, Chandrasekhara Sastry C. Analysis of high aspect ratio small holes in rapid electrical discharge machining of superalloys using Taguchi and TOPSIS. J Braz Soc Mech Sci Eng. 2020;42(2):99.
  • [32] Chandrasekhara Sastry C, Abeens M, Pradeep N, Muthu Manickam MA. Microstructural analysis, radiography, tool wear characterization, induced residual stress and corrosion behavior of conventional and cryogenic trepanning of DSS 2507. J Mech Sci Technol. 2020;34:2535–47.
  • [33] Qu N, Fang X, LiW, Zeng Y, Zhu D.Wire electrochemical machining with axial electrolyte flushing for titanium alloy. Chinese J Aeronaut. 2013;26(1):224–9.
  • [34] Xu B, Wu XY, Lei JG, Liang X, Zhao H, Guo DJ, Ruan SC. Micro-ECM of 3D micro-electrode for efficiently processing 3D micro-structure. Int J Adv Manuf Tech. 2017;91(1):709-717.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-995b0486-d60d-4c1f-9036-4e37e05cae98
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.