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The aim of this article is show the concept of using of the Discrete Markov 
Chains to predict economic phenomena. This subject is important for two reasons. 
The first of them are models based on Markov chains use the statistical informations 
obtained during the investigation processes. Another important reason is the fact that 
this way of modeling is highly flexible and can be used to simulation of economic 
phenomenas. In this paper authors describe the idea of modeling and present the 
example of simply model of patient population of primary health care and show 
preliminary simulation results. 
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1. Introduction 

This article focuses on the subject of using discrete Markov Chains in 
prediction a lot of processes but especially in economics in the management of 
health care. Markov Chains was discovered in 1906 by Andriej Markov, the 
Russian mathematician. Then this theory was developed by Andriej Kolmogorov. 
In the beginning of the article, authors present the method of finance the Primary 
Health Care System. Described inter alia: fee for service, capitation, fixed fee 
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(salary) and fee for the case. There are systems which are used currently in the 
world. The next part of the article presents methodology – the stochastic process 
modeling (stochastic process, the Markov Chain Process, Markov Chain Monte 
Carlo Simulation and Metropolis-Hasting algorithm). After the theoretical parts, 
authors to conducted a simulation experiment about the behavior of patients of 
Primary Health Care System in Poland and final conclusion. Because the discrete 
Markov Chain can be used in many areas the article shows also other the field of 
economic where this simulation experiment have application.  

Until now the Discrete Markov Chains were used in the financial risk 
management, in particular in banks and insurance companies. In the banking 
system were used in estimating the credit risk and in the study of changes in the 
behavior of users of credit cards. In the insurance systems inter alia in the system 
of Bonus-Malus. The Bonus-Malus system is a rating system which is used in the 
motor insurance, to the price adjustment communications products. In this system, 
the transition between classes depends on the number of the injuries suffered by the 
insured during the period of contributory (see [10]) for example in Poland it is a 
one year.  

Other areas where the Discrete Markov Chains were used to predict in 
economics was the capital market. Investigated the trading on the Warsaw Stock 
Exchange and other processes occurring in the capital market and made predictions 
about probable, further investment of stock market investors (see [12]). In addition, 
portfolio analysis can be performed by using the Discrete Markov Chains. It was 
also checked and described in literature (see [13]).By using the Discrete Markov 
Chains were also carried out an analysis of regional convergence. Analyzed may be 
whether and how quickly the regions with lower than average income can move 
"upward" and to the long-term, invariable distribution (see [8]). Because other 
classical methods of analysis of convergence were often criticized, the analysis of 
the convergence of both internal and external using the Discrete Markov Chains is 
now becoming increasingly popular (see [15]). 

In prediction in health economics by Discrete Markov Chains interesting is 
the model which allows to model the transition of a population of patients through 
a series of health states that are followed over time. It can be include for example: 
living with a particular disease; having a treatment; being cured; having 
complications; or becoming deceased. We have a probability that a patient staying 
in their existing state or moving to a different one. By this simulation it is possible 
to predict worsening or improvementing of patients health (see [11]). 

The possibility of using the Discrete Markov Chains in the economics is 
virtually unlimited. The every process, which meets the basic assumptions 
discussed in the theoretical part of this article, it can be predicted by using this 
method. 
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2. Primary Health Care System 

Primary Health Care (PHC) is a multidimensional and country-to-country 
diverse part of the health care system, thus it is a real challenge for modeling these 
systems. The international research team used existing data sets, reports, 
publications as well as gray data and opinions of key informants to provide 
innovative international comparisons of PHC systems in Europe. In Poland, as in 
other Central and Eastern European countries, the methods for reliable monitoring 
of care provided to patients has not been introduced in primary health care. 
Moreover, the data collected by the National Health Found are not be published. 
The above situation makes difficult take steps in family physician practices to 
improve the quality of care (see [1, 2]). 

The world currently uses the following methods of financing PHC (see 
[1]):Fee for service  (is the pay gap between a doctor service providers, or any 
other professional employee), Capitation (a system in which a physician or other 
medical worker or trader receives a fixed amount for each person covered by the 
care), Fixed fee (salary,) Fee for the case (the way in which the payment service 
provider receives a fixed salary for a comprehensive investigation in a particular 
case, or disease entity).  

All the described methods of finance primary health care based on the number 
of patients served at the facility. It follows that an efficient way simulation of PHC 
will be a simulation number of patients in a time range. 

3. Stochastic process modeling  

Many stochastic processes used for the modeling of financial marks, biological 
systems, social systems and other systems in engineering are Markovian. To 
simulate the process can be used Markov Chain Monte Carlo (MCMC). In 
statistics, MCMC method is a class of algorithms for sampling from a probability 
distribution. Probability distributions can be found the context of Bayesian data 
analysis. The goal will be to find parameter values in a probabilistic model that the 
best explains the data. It is based on known information (a priori). The created 
mathematical models are then created some posterior. Such approach guarantees 
that solution is influenced by the known data, therefore the models are often more 
accurate than obtained with other methods (see [2, 8]). In this section, the  
author will describe basic definitions from stochastic theory, the Markov Chain 
process, Markov Chain Monte Carlo Simulation and the Metropolis-Hasting 
algorithm. 
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3.1. Stochastic process 

A stochastic process 
n

X   is a family of random variables indexed by parameter n

(this parameter can by associated with time). Formally, a stochastic process for 

probability space ),,( PFΩ  and measurable space 
),( �S

. The sample space Ω

is a set of outcomes, where an outcome is the result of a single execution of a 
stochastic model. F is set of all events in the model and P is the probability 
measure. The probability measure is the function returning an event’s probability 

])1,0[:( →FP this can by. The S-valued stochastic process is a collection of S-
valued random variables on �. The stochastic process is indexed by a totally 

ordered set T. That is, a stochastic process X is the collection }:{ TnX n ∈ . 

3.2. The Markov Chain process 

Markov Chain is a stochastic process where we transition from one state to 

another using a sequential procedure. We start Markov Chain in the state 0x , and 

use a transition function )|( 1−nn xxp , to determine the next state, conditional on the 
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ijP  denotes the probability that the chain moves from state 1−nx  to state nx . This 

value is referred to as a one-step transition probability. The square matrix 
SjiP ∈= ),(P  is called the one-step transition matrix and each row sum to one (see 

[6, 11]). 

3.3. Markov Chain Monte Carlo Simulation 

Markov chains are relatively easy to simulate from, they can be used to 
sample from an a priori unknown and probability distribution. Monte Carlo 
sampling allows one to estimate various characteristics of a distribution such as the 
mean, variance, kurtosis, or any other statistic of interest to a researcher. Markov 
chains involve a stochastic sequential process where we can sample states from 
some stationary distribution. 

The Markov Chain Monte Carlo (MCMC) method is a general simulation 
method for sampling from posterior distributions and computing posterior 
quantities of interest. MCMC methods sample successively from a target 
distribution. Each sample depends on the previous one, hence the notion of the 
Markov chain.  
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Monte Carlo, as in Monte Carlo integration, is mainly used to approximate an 
expectation by using the Markov chain samples. In the simplest version 
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Where g is a function of interest and ��are samples from )(θp on its support 

S. This approximates the expected value of )(θg .With the MCMC method, it is 

possible to generate samples from an arbitrary posterior density )|( yp θ and to use 

these samples to approximate expectations of quantities of interest (see [6],[10]). 

3.4. Metropolis-Hasting algorithm 

To illustrate the work of all MCMC methods the Metropolis-Hastings method 
has been described. 

Suppose our goal is to sample from the target density )(θp . The Metropolis-

Hastings method creates a Markov chain that produces sequences of state: 
nθθθ →→→ �

10

where )(tθ  is a state at iteration. The samples from the chain, after burning, reflect 
samples from the target distribution )(θp . In this algorithm, we initialize the first 

state from a random value. We then use a proposal distribution )|( 1−nnp θθ  to 

generate a new candidate state *θ , that is conditional on the previous state. The 
proposal distribution is chosen by the research and good choices for the distribution 
depend on the problem. To the choose proposed distribution, we can use e.g.: 
maximum entropy, nuclear estimators, and transformation groups. 

The next step is to either accepted or reject proposal state. The probability of 

accepting the state *θ  is: 
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To decide on whether to accept or reject the proposed state, we generate a 
uniform deviate u. If α≤u  the proposal is accepted and the next state value is 

equal *θ , else we reject the proposal and next state value is equal to the old state 
value. We continue generating new proposals conditional on the current state of the 
method, and either accept or reject the proposals. This procedure continues until 
the sample reaches convergence. At this point, samples ���� the samples from the 
target distribution )(θp . 
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This can be converted into an algorithm as follows:

1. Generate initial value of �, and set u=0θ  and i = 0; 
2. Set max iteration number �; 
3. Repeat: 

a. i = i +1 , 

b. Generate proposal *θ  from )|( 1−nnp θθ �

c. Calculate the accepted probability:�
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d. Generate � from a uniform (0; 1) distribution, 

e. If � 	 
, accept new state and *1 θθ =−i , else set 1−= ii θθ ; 
4. Until i = N. 

The fact that asymmetric proposal distributions can be used allows the Metropolis-
Hastings procedure to sample from target distributions that are defined on a limited 
range (see [9], [6]). With bounded variables, care should be taken in constructing a 
suitable proposal distribution. Therefore, the sample will move towards the regions 
of the state space where the target function has high density. However, note that if 
the new proposal is less likely than the current state, it is still possible to accept this 
“worse” proposal and move toward it. This process of always accepting a “good” 
proposal, and occasionally accepting a “bad” proposal ensures that the sampler 
explores the whole state space and samples from all parts of a distribution 
(including the tails). In the numerical experiments, all algorithms have been 
prepared by the authors. 

Figure 1. Real data histogram with Normal Density Function
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4. Simulation Results 

In this section, will be described an example of simulation. For the purpose of 
the classifiers verification − the data gathered during the research project 
"Optimisation of the Polish financing system for the Primary Care Units"  
(in Polish: 'Optymalizacja polskiego systemu finansowania podstawowej opieki 
zdrowotnej' − see [1]). The data was collected in years 2009-2011. This simulations 
are based on data from 2010 for the five years old patients from the  
PHC units. 

In 2010, in this age group was 621 visits. The average value of the day for 
normalized value of data is advice about 1.7, while the standard deviation is about 
0.0027. The maximum number of visits in a single day to 9 and the minimum 1. 
We used this information to estimated number of the visit in PHC units in  
next year. 

How we can see in figure 1 density function describe this data have Normal 
form. In simulation we show result for native density function (Poisson density) 
and Normal density function. 

4.1. Poisson density function example 

For native case of density function we can define acceptation function in 
Metropolias-Hasting algorithm as: 
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where � is the expected value. 
Simulations result for this acceptation function have been showed in figure 2.  

Figure 3 present density function for simulation result. Total number of visit in this 
simulation was 11296. Value of mean visit per day was 1.7014 and standard 
deviation have value 0.0025. As it is easy to see, all the parameters describing 
density function in five years old group have been preserved by simulation. 
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Figure 2. Comparison real data with simulation result for normal density function 
�

Figure 3. Simulated data histogram with Poisson Density Function 
�
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4.2. Normal density function example 

In this case, the function of acceptance State the Metropolias-Hastings will 
take the form of: 
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Where � is the expected value and standard deviation �.  
Simulations result have been showed in Figure 4. In the simulation have been 

888 visits or expected value was approximately 1.8 and the standard deviation of 
about 0.0026. Figure 5 present density function for data form simulation. 

�

Figure 4. Comparison real data with simulation result for normal density function 
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�

Figure 5. Simulated data histogram with normal density function 

5. Conclusion  

This paper present simple example using Markov Chain Monte Carlo method 
in simulation health economics of polish primary health care. As it is easy to see 
the results of the simulation for Poisson and Normal distribution (Figure 2 and 
Figure 4) are similar. In this case, it is shown that this simple model is good to 
simulation of behavior patient in different year groups. The study has proven the 
need for further research of complexity model of Primary Health Care unit. and 
will be the subject of further work.
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