PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Comparative Analysis of Deep Learning and Decision Tree Approaches for Predicting Aircraft Engine Remaining Useful Life

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Accurate prediction of Remaining Useful Life (RUL) is crucial for Prognostics and Health Management (PHM), particularly in predictive maintenance strategies aimed at ensuring the reliability of industrial systems. This study compares two approaches for RUL prediction of aircraft engines: a deep learning-based one-dimensional Convolutional Neural Network (CNN-1D) and a traditional Decision Tree (DT) algorithm, using data from the C-MAPSS dataset. The results show that the CNN-1D model significantly outperforms the DT model, achieving a Root Mean Square Error (RMSE) of 21.44 on the training set and 27.12 on the test set, compared to the DT model’s RMSE of 23.83 and 28.93, respectively. These findings highlight the superior capability of deep learning techniques in RUL estimation, underscoring their importance in PHM and predictive maintenance applications.
Rocznik
Tom
Strony
183--200
Opis fizyczny
Bibliogr. 41 poz., rys., tab., wykr.
Twórcy
  • Laboratory of Automation and Manufacturing, Department of Industrial Engineering, University of Batna 2, Batna, Algeria
  • Laboratory of Automation and Manufacturing, Department of Industrial Engineering, University of Batna 2, Batna, Algeria
  • Laboratory of Automation and Manufacturing, Department of Industrial Engineering, University of Batna 2, Batna, Algeria
  • Laboratory of Automation and Manufacturing, Department of Industrial Engineering, University of Batna 2, Batna, Algeria
Bibliografia
  • Azadeh, A., Asadzadeh, S. M., Salehi, N., & Firoozi, M. (2015). Condition-based maintenance effectiveness for series-parallel power generation system - A combined Markovian simulation model. Reliability Engineering & System Safety, 142, 357-368. https://doi.org/10.1016/j.ress.2015.04.009
  • Ben Ali, J., Chebel-Morello, B., Saidi, L., Malinowski, S., & Fnaiech, F. (2015). Accurate bearing remaining useful life prediction based on Weibull distribution and artificial neural network. Mechanical Systems and Signal Processing, 56, 150-172. https://doi.org/10.1016/j.ymssp.2014.10.014
  • Benkedjouh, T., Medjaher, K., Zerhouni, N., & Rechak, S. (2013). Remaining useful life estimation based on nonlinear feature reduction and support vector regression. Engineering Applications of Artificial Intelligence, 26(7), 1751-1760. https://doi.org/10.1016/j.engappai.2013.02.006
  • Chai, T., & Draxler, R. R. (2014). Root mean square error (RMSE) or mean absolute error (MAE)? Arguments against avoiding RMSE in the literature. Geoscientific Model Development, 7(3), 1247-1250. https://doi.org/10.5194/gmd-7-1247-2014
  • Charbuty, B., & Abdulazeez, A. (2021). Classification based on decision tree algorithm for machine learning. Journal of Applied Science and Technology Trends, 2(01), 20-28. https://doi.org/10.38094/jastt20165
  • Cubillo, A., Perinpanayagam, S., & Esperon-Miguez, M. (2016). A review of physics-based models in prognostics: Application to gears and bearings of rotating machinery. Advances in Mechanical Engineering, 8(8), 1-21. https://doi.org/10.1177/1687814016664660
  • De Oña, R., Eboli, L., & Mazzulla, G. (2014). Key factors affecting rail service quality in Northern Italy: A decision tree approach. Transport, 29(1), 75-83. https://doi.org/10.3846/16484142.2014.898216
  • DeCastro, J. A., Litt, J. S., & Frederick, D. K. (2008). A modular aero-propulsion system simulation of a large commercial aircraft engine. 44th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. https://doi.org/10.2514/6.2008-4579
  • Elsheikh, A., Yacout, S., & Ouali, M. S. (2019). Bidirectional handshaking LSTM for remaining useful life prediction. Neurocomputing, 323, 148-156. https://doi.org/10.1016/j.neucom.2018.09.076
  • Frederick, D. K., DeCastro, J. A., & Litt, J. S. (2007). User’s guide for the Commercial Modular Aero-Propulsion System Simulation (C-MAPSS). NASA Technical Reports Server (NTRS). https://ntrs.nasa.gov/citations/20070034949
  • Gebraeel, N., Lawley, M., Liu, R., & Parmeshwaran, V. (2004). Residual life predictions from vibration-based degradation signals: A neural network approach. IEEE Transactions on Reliability, 51(3), 694-700.
  • Gehring, J., Auli, M., Grangier, D., Yarats, D., & Dauphin, Y. N. (2017). Convolutional sequence to sequence learning. Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Vol. 1), 562-570. https://arxiv.org/abs/1705.03122
  • Gonzalez, T. F. (2007). Handbook of approximation algorithms and metaheuristics. Chapman and Hall/CRC. https://doi.org/10.1201/9781420010749
  • Heimes, F. O. (2008). Recurrent neural networks for remaining useful life estimation. 2008 International Conference on Prognostics and Health Management (PHM 2008). https://doi.org/10.1109/PHM.2008.4711422
  • Heng, A., Zhang, S., Tan, A. C. C., & Mathew, J. (2009). Rotating machinery prognostics: State of the art, challenges, and opportunities. Mechanical Systems and Signal Processing, 23(3), 724-739. https://doi.org/10.1016/j.ymssp.2008.06.007
  • Johnson, R., & Zhang, T. (2017). Deep pyramid convolutional neural networks for text categorization. ACL 2017 - 55th Annual Meeting of the Association for Computational Linguistics, Proceedings of the Conference (Vol. 1), 562-570. https://doi.org/10.18653/v1/P17-1052
  • Jouin, M., Gouriveau, R., Hissel, D., Péra, M. C., & Zerhouni, N. (2016). Degradations analysis and aging modeling for health assessment and prognostics of PEMFC. Reliability Engineering & System Safety, 148, 78-95. https://doi.org/10.1016/j.ress.2015.12.003
  • Kali, Y., & Linn, M. (2010). Science. In International Encyclopedia of Education (3rd ed., pp. 468-474). https://doi.org/10.1016/B978-0-08-044894-7.00081-6
  • Krizhevsky, B. A., Sutskever, I., & Hinton, G. E. (2012). ImageNet classification with deep convolutional neural networks. Communications of the ACM, 60(6), 84-90.
  • Lee, J., Wu, F., Zhao, W., Ghaffari, M., Liao, L., & Siegel, D. (2014). Prognostics and health management design for rotary machinery systems - Reviews, methodology, and applications. Mechanical Systems and Signal Processing, 42(1-2), 314-334. https://doi.org/10.1016/j.ymssp.2013.06.004
  • Lei, Y., Li, N., Guo, L., Li, N., Yan, T., & Lin, J. (2018). Machinery health prognostics: A systematic review from data acquisition to RUL prediction. Mechanical Systems and Signal Processing, 104, 799-834. https://doi.org/10.1016/j.ymssp.2017.11.016
  • Li, Y., Zhang, S., Wang, X., Liang, B., & Lu, W. (2019). Data-driven health estimation and lifetime prediction of lithium-ion batteries: A review. Renewable and Sustainable Energy Reviews, 113, Article 109254. https://doi.org/10.1016/j.rser.2019.109254
  • Liao, L., & Köttig, F. (2014). Review of hybrid prognostics approaches for remaining useful life prediction of engineered systems, and an application to battery life prediction. IEEE Transactions on Reliability, 63(1), 191-207. https://doi.org/10.1109/TR.2014.2299152
  • Liao, L., Jin, W., & Pavel, R. (2016). Enhanced restricted Boltzmann machine with prognosability regularization for prognostics and health assessment. IEEE Transactions on Industrial Electronics, 63(11), 7076-7083. https://doi.org/10.1109/TIE.2016.2586442
  • Navathe, S. B., Wu, W., Shekhar, S., Du, X., Wang, X. S., & Xiong, H. (2016). Database systems for advanced applications: 21st International Conference, DASFAA 2016, Dallas, TX, USA, April 16-19, 2016, Proceedings, Part I. Springer. https://doi.org/10.1007/978-3-319-32025-0
  • Pecht, M., & Gu, J. (2009). Physics-of-failure-based prognostics for electronic products. Transactions of the Institute of Measurement and Control, 31(3-4), 309-322. https://doi.org/10.1177/0142331208092031
  • Qian, Y., Yan, R., & Gao, R. X. (2017). A multi-time scale approach to remaining useful life prediction in rolling bearing. Mechanical Systems and Signal Processing, 83, 549-567. https://doi.org/10.1016/j.ymssp.2016.06.031
  • Rezaeian Jouybari, B., & Shang, Y. (2020). Deep learning for prognostics and health management: State of the art, challenges, and opportunities. Measurement: Journal of the International Measurement Confederation, 163, Article 107929. https://doi.org/10.1016/j.measurement.2020.107929
  • Saxena, A., Goebel, K., Simon, D., & Eklund, N. (2008). Damage propagation modeling for aircraft engine run-to-failure simulation. 2008 International Conference on Prognostics and Health Management (PHM 2008). https://doi.org/10.1109/PHM.2008.4711414
  • Shenfield, A., & Howarth, M. (2020). A novel deep learning model for the detection and identification of rolling element-bearing faults. Sensors (Switzerland), 20(18), Article 5112. https://doi.org/10.3390/s20185112
  • Si, X. S., Wang, W., Hu, C. H., & Zhou, D. H. (2011). Remaining useful life estimation - A review on the statistical data-driven approaches. European Journal of Operational Research, 213(1), 1-14.
  • Sikorska, J. Z., Hodkiewicz, M., & Ma, L. (2011). Prognostic modeling options for remaining useful life estimation by industry. Mechanical Systems and Signal Processing, 25(5), 1803-1836. https://doi.org/10.1016/j.ymssp.2010.11.018
  • Sishi, M., & Telukdarie, A. (2021). The application of decision tree regression to optimize business processes. Proceedings of the International Conference on Industrial Engineering and Operations Management (No. Dm), 48-57.
  • Stein, G., Chen, B., Wu, A. S., & Hua, K. A. (2005). Decision tree classifier for network intrusion detection with GA-based feature selection. Proceedings of the Annual Southeast Conference (Vol. 2), 2136-2141. https://doi.org/10.1145/1167253.1167288
  • Suah, F. B. M. (2017). Preparation and characterization of a novel Co(II) optode based on polymer inclusion membrane. Analytical Chemistry Research, 12, 40-46. https://doi.org/10.1016/j.ancr.2017.02.001
  • Tian, Z. (2012). An artificial neural network method for remaining useful life prediction of equipment subject to condition monitoring. Journal of Intelligent Manufacturing, 23(2), 227-237. https://doi.org/10.1007/s10845-009-0356-9
  • Tian, Z., Wong, L., & Safaei, N. (2010). A neural network approach for remaining useful life prediction utilizing both failure and suspension histories. Mechanical Systems and Signal Processing, 24(5), 1501-1514.
  • Xiao, H., Yuan, K., & Zhan, Z. (2022). System reliability analysis based on dependent Kriging predictions and parallel learning strategy. Reliability Engineering & System Safety, 218, Article 108198. https://doi.org/10.1016/j.ress.2022.108198
  • Yan, R., Ma, Z., Zhao, Y., & Kokogiannakis, G. (2016). A decision tree-based data-driven diagnostic strategy for air handling units. Energy and Buildings, 133, 37-45. https://doi.org/10.1016/j.enbuild.2016.09.039
  • Zhang, S., Peng, H., Fu, J., Lu, Y., & Luo, J. (2021). Multi-scale 2D temporal adjacency networks for moment localization with natural language. IEEE Transactions on Pattern Analysis and Machine Intelligence. https://doi.org/10.1109/TPAMI.2021.3120745
  • Zhao, Z., Liang, B., Wang, X., & Lu, W. (2017). Remaining useful life prediction of aircraft engine based on degradation pattern learning. Reliability Engineering & System Safety, 164(457), 74-83. https://doi.org/10.1016/j.ress.2017.02.007
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-995087c9-4317-4b94-ae41-60bfa713985c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.