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Abstract  
Accurate prediction of Remaining Useful Life (RUL) is crucial for Prognostics and 

Health Management (PHM), particularly in predictive maintenance strategies aimed  
at ensuring the reliability of industrial systems. This study compares two approaches  
for RUL prediction of aircraft engines: a deep learning-based one-dimensional 
Convolutional Neural Network (CNN-1D) and a traditional Decision Tree (DT) 
algorithm, using data from the C-MAPSS dataset. The results show that the CNN-1D 
model significantly outperforms the DT model, achieving a Root Mean Square Error 
(RMSE) of 21.44 on the training set and 27.12 on the test set, compared to the DT 
model’s RMSE of 23.83 and 28.93, respectively. These findings highlight the superior 
capability of deep learning techniques in RUL estimation, underscoring their importance 
in PHM and predictive maintenance applications. 
 

Keywords Remaining Useful Life, Deep Learning, Convolution Neural Networks,  
    Predictive Maintenance, Prognostics and Health Management.  
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1.  INTRODUCTION  

 
Prognostics and Health Management (PHM) methods are essential in ensuring the 

reliability and longevity of industrial systems. PHM encompasses a suite of technologies 
and processes designed to monitor the health of machines and equipment, predict 
potential failures, and provide actionable insights for maintenance decision-making.  
By integrating advanced diagnostics, prognostics, and health management strategies, 
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PHM enables the early detection of faults, the reliable estimation of Remaining Useful 
Life (RUL), and the planning of maintenance activities to prevent unexpected 
breakdowns. This proactive approach not only enhances operational efficiency but also 
reduces maintenance costs and downtime. PHM methods are increasingly being adopted 
across various industries, including aerospace, automotive, and manufacturing, where 
they play a critical role in sustaining continuous operation and optimizing asset 
performance. Techniques that depend on Condition-Based Maintenance (CBM) and 
the use of intelligent PHM methods have proven their high efficiency in achieving this 
(Zhao et al., 2017). With the advent of data-driven and machine-learning approaches, 
PHM has evolved to incorporate more sophisticated algorithms, such as deep learning 
models, that offer higher accuracy in failure prediction and health assessment, further 
solidifying its importance in modern industrial practices.  

Among the goals of PHM is to reduce maintenance costs and increase system 
reliability by estimating RUL based on historical data (Heimes, 2008). Recently, RUL 
prediction has garnered significant attention from both researchers and operators, 
driven by the increasing industrial demand for efficiency and reliability (Zhao et al., 
2017). In contrast to traditional methods, such as corrective maintenance and scheduled 
preventive maintenance (Azadeh et al., 2015), RUL prediction offers a less limited 
approach. RUL is generally defined as “the length from the current time to the end of 
its useful life” (Si et al., 2011) and it is widely employed in decision-making to improve 
health maintenance and management policies (Rezaeian Jouybari & Shang, 2020;  
Lei et al., 2018). The primary algorithms for predicting RUL can be categorized into 
model-dependent methods (Cubillo et al., 2016; Pecht & Gu, 2009), data-driven 
methods (Li et al., 2019; Heng et al., 2009), and hybrid methods (Liao & Köttig, 2014; 
Krizhevsky et al., 2012). 

The first type of method focuses on classifying the stages of system degradation by 
building mathematical models based on failure mechanisms or the first cause of damage 
(Xiao et al., 2022). An example of this is the Paris-Erdogan (PE) model, used to describe 
the propagation of cracks (Qian et al., 2017). However, one obstacle to this method is 
the difficulty of generalizing a static model to the rest of the systems. This limitation 
has led to the rise of data-driven methods as an alternative, which rely on historical data 
specific to each system. With the growing availability of massive datasets, deep learning 
has proven to play an effective role in most fields (Zhang et al., 2021). In contrast, mixed 
methods, which combine both model-based and data-driven approaches, have shown 
promising results in the field of prediction (Tian et al., 2010), as they leverage both data 
and structural information. In the context of approaches to aircraft engine health 
monitoring, commonly used hybrid methods include the Weibull distribution (Ben Ali 
et al., 2015), particle filter (Ben Ali et al., 2015), and Eyring model (Jouin et al., 2016).  

As noted, techniques based on historical data achieve good modeling of deterioration 
characteristics, provided there is sufficient data available for training. These models do 
not focus primarily on previous experience in forecasting, so in recent years numerous 
approaches have been proposed that have achieved good results in prediction. Among 
them are Support Vector Machines (SVM) (Benkedjouh et al., 2013) and Artificial 
Neural Networks (ANN) (Gebraeel et al., 2004). Machine learning techniques, 
especially neural network-based approaches, have seen widespread adoption in health 



management and failure prediction, due to their capacity to model nonlinear systems 
without requiring a detailed understanding of the system’s physical structure. Instead, 
they exploit the information derived from sensors as input (Sikorska et al., 2011).  

Tian (2012) used Artificial Neural Networks (ANN) to predict the lifetime of 
condition-monitored equipment, specifically pump bearings. He exploited the scaling 
values of various points as inputs and percentages of equipment life as outputs using  
a neural network based on Long Short-Term Memory (LSTM) to estimate the RUL 
for pneumatic motors in cases of failure and strong noise (Elsheikh et al., 2019). LSTM 
is a neural network model that has been proposed to solve the RUL estimation problem 
by exploiting data collected by sensors that register various indicators, such as vibration 
intensity or exerted pressure (Kali & Linn, 2010). 

Deep learning has shown effective results in pattern recognition and great capabilities 
in the field of intelligent predictions, thanks to a multi-layered structure capturing 
detailed information from input data (Gonzalez, 2007). With complex deep structures, 
it is possible to design excellent abstract models, resulting in more efficient features 
extraction as compared to shallow networks. By comparing the data obtained from image 
processing (Liao et al., 2016) and machine monitoring, we find that they share two 
dimensions. Thus, deep learning networks have tremendous capabilities in estimating 
PHM and RUL.  

The restricted Boltzmann machine (RBM) has been proposed to predict RUL in 
machinery (Liao et al., 2016), To address the problem of the deterioration of NASA’s 
Turbofan engine, a multipurpose Deep Belief Networks (DBN) suite was proposed, 
integrating an evolutionary algorithm with the traditional DBN training technique to 
develop multiple DBNs (Navathe et al., 2016). Convolutional Neural Networks 
(CNNs), originally proposed by LeCun et al. (Lee et al., 2014) for image processing, 
have since achieved considerable success in various applications.  

In this study, we apply a Convolutional Neural Network (CNN) architecture, 
specifically a one-dimensional (1D) deep neural network, to predict the Remaining 
Useful Life (RUL) of aircraft engines and improve prediction accuracy. The proposed 
approach is evaluated using the NASA C-MAPSS dataset, a widely recognized 
benchmark for engine health monitoring research (Saxena et al., 2008). This dataset 
provides realistic simulation data for gas turbine engines, allowing for an in-depth 
examination of the deterioration characteristics of engine components. 

The study begins with a review of RUL prediction literature, including an overview 
of previous work utilizing the C-MAPSS dataset. Following this, the methods for 
modeling degradation characteristics are detailed, with a particular focus on deep 
learning techniques. Given the increasing complexity of modern aircraft systems, which 
demand high reliability and safety standards, accurately predicting RUL is critical for 
effective maintenance planning. This study addresses these challenges by leveraging 
historical sensor data to model engine performance degradation. The comparative 
analysis involves applying the CNN-1D model alongside traditional machine learning 
algorithms, specifically a Decision Tree (DT) model, to assess predictive performance 
on the same dataset. This comparison aims to validate the proposed method’s 
effectiveness and highlight the advantages of deep learning approaches in RUL 
estimation. The results underscore the capability of the CNN-1D model to provide 



accurate RUL predictions, paving the way for broader adoption of deep learning 
techniques in predictive maintenance for aviation and other industries. 
 
2.  METHODS 
 

2.1. CNN-1D 
Convolutional Neural Networks (CNNs) are a class of deep learning models known 

for their ability to achieve high accuracy in various tasks. While two-dimensional CCNs 
(CNN-2D) have been applied to image processing and object recognition (Suah, 2017; 
Gehring et al., 2017), one-dimensional networks CNNs (CNN-1D) have achieved 
remarkable success in other domains, such as structured language data (Johnson & 
Zhang, 2017) and document classification (Shenfield & Howarth, 2020).  

CNNs are feed-forward neural networks that consist of multiple stages designed to 
extract features from input data. Fig. 1 illustrates a simple example of a one-dimensional 
CNN architecture; during each convolutional phase, convolutional filters are applied, 
followed by the aggregation process. These filters find the high-level features and then 
enter these outputs into the aggregation stage and reduce the spatial size of the features 
obtained through the filters.  

 

 
Fig. 1. Simple CNN-1D architecture with two convolutional layers  

(Frederick et al., 2007). 
 

2.2. Decision Trees  
Decision Trees are one of the most widely used methods in forecasting and decision-

making across many fields, including pattern recognition and machine learning (Stein 
et al., 2005), (Sishi & Telukdarie, 2021). They are effective for solving both regression 
and classification problems (Charbuty & Abdulazeez, 2021; Yan et al., 2016), as they 
can predict future outcomes based on past and current data (De Oña et al., 2014). A DT 
algorithm partitions the dataset into multiple branches, creating a tree-like model that 
facilitates efficient decision-making and accurate predictions. The design of the tree is 



optimized based on the characteristics of the data and the requirements of the prediction 
model (DeCastro et al., 2008; Frederick et al., 2007).  

 

 
Fig. 2. Example of a decision tree. 

  
3.  MATERIALS  

 
This study focuses on predicting the deterioration of a monitored turbine engine 

based on simulation data obtained from various sensors. The propeller engine simulation 
model was developed using C-MAPSS, a simulation tool developed at NASA.  
C-MAPSS is widely used in engine health monitoring research, due to its ability  
to simulate realistic conditions for large commercial turbine engines (Navathe et al., 
2016). Fig. 3 presents a schematic diagram of a commercial aircraft gas turbine engine 
simulated using C-MAPSS.  
 

 
Fig. 3. Simplified engine diagram simulated in C-MAPSS (Heimes, 2008). 



The Commercial Modular Air Propulsion System (C-MAPSS) model, developed 
by NASA, provides a transient simulation of a large commercial turbine engine (up to 
90,000 lbs of thrust) with a realistic engine control system. The software supports easy 
access to health, control, and engine parameters through a Graphical User Interface 
(GUI) – a graphical simulation environment of a propeller engine – enabling users to 
implement and test advanced algorithms.  

C-MAPSS runs user-defined transient simulations and includes an atmospheric 
model that can simulate engine operation at altitudes from sea level to 40000 feet, Mach 
numbers from 0 to 0.90, and ambient temperatures from -60°F to 103°F. The package 
also includes an energy management system that allows the engine to be operated at  
a wide range of propulsion levels across a full range of flight conditions (Chai & 
Draxler, 2014).  

C-MAPSS takes approximately 14 input parameters and can produce several output 
metrics. Table 1 lists the outputs that were used in this study. The inputs include fuel 
flow and a set of 13 health parameters that allow the user to simulate the effects of faults 
and deterioration in any of the five engine components: Fan, Low-Pressure Compressor 
(LPC), High-Pressure Compressor (HPC), High-Pressure Turbine (HPT), and Low-
Pressure Turbine (LPT). 
 
Table 1. The meanings of C-MAPSS data sources. 
Description Symbol Units 
Total temperature at the fan inlet T2 °R 

Total temperature at the LPC outlet T24 °R 

Total temperature at the HPC outlet T30 °R 

Total temperature at the LPT outlet T50 °R 

Pressure at the fan inlet P2 Psia 

Total pressure in bypass-duct P15 Psia 

Total pressure at the HPC outlet P30 Psia 

Physical fan speed Nf rpm 

Physical core speed Nc rpm 

Engine pressure ratio (P50/P2) Epr  

Static pressure at the HPC outlet Ps30 Psia 

Ratio of fuel flow to Ps30 Phi PPS/psi 

Corrected fan speed NRf rpm 

Corrected core speed NRc Rpm 

Bypass ratio BPR  

Burner fuel-air ratio farB  



 
 

The dataset used in this study is based on data proposed by NASA, which is from 
an aero engine simulation program. This data is divided into four sub-groups FD001, 
FD002, FD003, and FD004, each containing various measurements obtained from 21 
sensors, in addition to some other settings. For this research, the engine FD001 was 
selected as a case study. Table 2 represents the engine data.  

  
Table 2. Description of FD001 datasets. 

 
  

This study utilized a dataset with approximately 24.72 billion samples and 26 input 
variables that influence the decay of engine FD001. The dataset’s features serve as input 
elements for the CNN model. To facilitate feature selection, a bar chart of the dataset’s 
features highlights the most influential variables affecting the model’s predictive 
performance (see Fig. 4).  

Dataset CMAPSS (FD001) 

Training engine 100 

Testing engine 100 

Working condition 1 

Fault modes 2 

Bleed enthalpy bleed  

Demanded fan speed Nf_dmd Rpm 
Demanded corrected fan speed PCNR_dmd Rpm 

Coolant bleed (HPT) W31HPT lbm/s 

Coolant bleed (LPT) W32LPT lbm/s 
The total temperature at the HPT 
outlet 

Parameters for calculating  
Health Index 

 

Fan stall margin SmFan  
LPC stall margin SmLPC  

HPC stall margin SmHPC  



 
Fig. 4. The distribution of the dataset’s features. 

 
Fig. 5 represents the distribution of 16 sensors out of the 26 data features, showing that 

many of the features constitute the basic building blocks in forming the model – like 
columns sr7, sr8, sr9, sr20, sr26, etc., which contain only significant features.  



 
Fig. 5. Bar chart of influential features. 

 

 
Fig. 6. Correlation heatmap for selected dataset features. 

  



After data simplification, to further understand the relationships and interdependencies 
among variables, a heatmap was drawn up, as shown in Figure 6. The heatmap visualizes 
the correlation matrix of the features, where each cell represents the correlation coefficient 
between two variables, with colors ranging from deep blue (indicating a strong positive 
correlation) to deep red (indicating a strong negative correlation). This visualization aids 
in identifying closely related variables, which can inform feature selection and 
engineering decisions by highlighting which variables might be redundant or highly 
informative for predictive modeling. By understanding these relationships, we can better 
interpret the data and refine models to improve prediction accuracy and efficiency. The 
heatmap thus serves as a valuable tool in exploring the dataset’s structure and uncovering 
patterns and interactions between variables. 
 
4.  RESULTS AND DISCUSSION 
 

Engine cycles play a crucial role in assessing the Remaining Useful Life (RUL) of 
engines, as they significantly influence engine degradation and efficiency over time. 
Each engine cycle refers to a complete operational period of the engine, including both 
active operation and downtime. With each additional cycle, various factors contribute 
to their gradual wear and tear, affecting engine performance and increasing the 
likelihood of failures.  
 

 
Fig. 7. Diagram of model degradation of all engines. 

  
The relationship between engine cycles and RUL is fundamental for predictive 

maintenance. Over time, the repeated stress and strain experienced during each cycle 
contribute to the degradation of engine components, such as turbine blades, bearings, 
and seals. This cumulative effect leads to a decline in engine efficiency and a higher 
probability of malfunction. Fig. 7 illustrates this relationship by displaying engine 
degradation as a function of the number of cycles. The graph demonstrates that, while 



the RUL of different engines may vary due to individual operational histories and 
maintenance practices, a common trend is observed: as the number of engine cycles 
increases, the remaining useful life of the engines generally decreases. This inverse 
relationship indicates that engines with higher cycles are more prone to experience 
reduced performance and are at a greater risk of failure.  

The diagram of engine degradation underscores the importance of monitoring engine 
cycles for predicting RUL. By analyzing the number of cycles alongside other 
operational data, predictive maintenance models can more accurately forecast when an 
engine might require maintenance or replacement, thereby improving overall reliability 
and reducing unexpected downtime. 

 
4.1. 1D-CNN structure  
The architecture of the one-dimensional Convolutional Neural Network (CNN-1D) 

algorithm begins with a convolutional phase that utilizes a set of 32 learnable 2×2 
convolutional filters. These filters are essential for extracting intricate features from the 
input data, such as edges and curves. During this phase, the filters slide across the input 
data, performing convolution operations to identify and capture these key features.  

Following the convolutional phase, the output is processed through an aggregation 
phase. This phase reduces the spatial dimensions of the feature maps generated by the 
filters, effectively down sampling the data while retaining the most significant features. 
This process is crucial for focusing on the critical features learned by each filter and for 
reducing the computational load in subsequent layers.  

The network then continues to refine its feature extraction by applying an additional 
set of 64 filters. As the data progresses through these convolutional phases from left to 
right, the network increasingly learns more specialized and abstract features. Each 
successive layer of filters builds upon the previous layers, capturing higher-level patterns 
and details within the data. This iterative scanning and feature extraction process allows 
the CNN-1D to develop a comprehensive understanding of the input data, enhancing 
its ability to make accurate predictions. Table 3 illustrates the progression, showing how 
the network’s ability to recognize and learn features evolves through each convolutional 
phase, contributing to the overall performance of the model.  

 
Table 3. CNN-1D structure.  

 



The CNN algorithm was chosen for building this model due to its powerful learning 
capabilities. Analysis of the predicted RUL for the FD001 engine revealed a close match 
between the predicted RUL and the actual RUL, confirming the efficiency of the 
algorithm in this application, as well as the more general overall effectiveness of deep 
learning.  

 
4.2. Decision Tree Induction  
The decision tree prediction model, presented in Fig. 8, starting from the input data 

set, adopts three divisions. Implemented in Python, the model was trained on the 
regression problem using the following parameters: 𝑺𝒊, 𝑖=1, 21 with constraints on  
the growth of branches. The resulting tree has six sub-nodes and eight leaves.  
The estimated error at the last leaf, located at the third level of the tree, was 82.531. 
This outcome is associated with the node where sample 2679 intersects with feature 
Sr9, descending from the parent node that includes sample 6128 with Sr9 at the second 
level.  

The results indicate an improvement in prediction accuracy as the number of divisions 
increases. However, some features, such as ‘sr7’ and ‘sr12,’ exhibit greater sensitivity to 
new divisions, leading to terminal leaf nodes at their branches. In contrast, the results 
for ‘sr11,’ which stem from node ‘sr7,’ demonstrated suboptimal performance, with  
a squared error at the final leaf exceeding that of the parent node. 
 

 
Fig. 8. Decision Tree structure.  

  
Comparison of predicted and actual RUL graphs reveals that the predicted RUL 

often diverges from the actual RUL. When the predicted RUL graph is below the actual 
RUL graph, it indicates that the prediction was made too early, before the actual failure 
occurred. Conversely, when the predicted RUL graph is above the actual RUL graph, 



the prediction was late, occurring after the failure. Between these two situations, early 
prediction is preferable as it helps to avoid potential risks associated with late 
predictions. When the two graphs align closely, it indicates that the prediction accurately 
coincided with the failure occurrence (see Fig. 9). 
 

 
Fig. 9. Diagram of true and predicted RUL using CNN-1D. 

 
The CNN-1D algorithm demonstrated exceptional learning capabilities, as evidenced 

by the high convergence between the predicted and actual RUL values for the FD001 
engine (Fig. 10). The figure shows that the CNN-1D model’s predictions closely match 
the actual RUL values, indicating strong model performance. This contrasts with  
the discrepancies observed between the expected and real RUL values when using  
a predictive decision support model based on the Decision Tree (DT) algorithm.  
 

 
Fig. 10. Diagram of true and predicted RUL using DT.  

 



To assess the models’ performance, we utilized common statistical measures: Root 
Mean Square Error (RMSE) and Mean Square Error (MSE). These metrics quantify 
the prediction errors and provide insights into the model’s accuracy. RMSE, in 
particular, helps measure the standard deviation of the residuals or prediction errors. 
Table 4 summarizes the evaluation metrics for both the CNN-1D and DT models. For 
the CNN-1D model, the training set showed an MSE of 459.51 and an RMSE of 21.44, 
while the test set resulted in an MSE of 735.56 and an RMSE of 27.12. The DT model, 
in turn, had higher error metrics, with an MSE of 567.90, an RMSE of 23.83 for the 
training set, and an MSE of 837.13 and an RMSE of 28.93 for the test set. Additionally, 
the R-squared (R²) values, which indicate the proportion of variance explained by the 
model, were higher for the CNN-1D model (0.75 for the training set and 0.57 for  
the test set) compared to the DT model (0.68 for the training set and 0.56 for the test 
set). These results underscore the superior accuracy and reliability of the CNN-1D 
model over the DT algorithm in predicting RUL, validating the effectiveness of deep 
learning techniques in this context.  

 
Table 4. The evaluation metrics. 

 
 

5.  CONCLUSIONS 
 

Prognostics and Health Management (PHM) methods are an advanced approach to 
maintaining the reliability and efficiency of industrial systems. PHM integrates various 
technologies and processes to monitor, diagnose, and predict the health and performance 
of machines and systems in real-time. By leveraging data collected from sensors and 
other monitoring tools, PHM methods can detect potential failures before they occur, 
allowing for proactive maintenance and minimizing downtime. This early detection 
capability is crucial for preventing costly unplanned breakdowns and extending the life 
of critical assets. PHM methods often combine data-driven models, physics-based 
models, and hybrid approaches to assess the Remaining Useful Life (RUL) of 
components, guiding maintenance decisions and ensuring that systems continue to 
operate efficiently and safely. As part of the broader field of predictive maintenance, 
PHM is vital in industries where system reliability is paramount, such as aerospace, 
automotive, and manufacturing.  

In this study, a detailed comparative analysis was conducted to evaluate the 
effectiveness of the CNN-1D deep learning algorithm against the Decision Tree (DT) 
algorithm in predicting the Remaining Useful Life (RUL) of gas turbine engines using 
the C-MAPSS dataset. The choice to rely on the CNN-1D algorithm was driven by its 

Model MSE RMSE R2 

Train set 
CNN-1D

459.5114 21.4362 0.7461
Test set 735.5647 27.1213 0.5707
Train set 

DT
567.8965 23.8305 0.6761

Test set 837.1339 28.9332 0.5588



superior learning capabilities, which were evidenced by the high degree of convergence 
observed between the predicted RUL and the actual RUL, particularly for the FD001 
engine dataset. The evaluation of model performance was carried out using key metrics 
such as Mean Square Error (MSE), Root Mean Square Error (RMSE), and the  
R-squared (R²) coefficient. The results demonstrated that the CNN-1D algorithm 
outperformed the Decision Tree algorithm, achieving lower MSE and RMSE values 
on both the training and test datasets and higher R² values, indicating better predictive 
accuracy and reliability.  

Specifically, the CNN-1D model yielded an RMSE of 21.44 on the training set and 
27.12 on the test set, compared to the DT model’s RMSE of 23.83 on the training set 
and 28.93 on the test set. These results underscore the robustness of the CNN-1D 
algorithm in handling time series data, reinforcing its efficacy over traditional machine 
learning approaches like Decision Trees. This study highlights the potential of deep 
learning techniques, particularly CNN-1D, in the predictive maintenance domain for 
gas turbine engines. By applying a deep learning approach to time series data, this 
research affirms the effectiveness of CNN-1D in delivering more accurate and reliable 
predictions, paving the way for its broader application in similar predictive analytics 
tasks.  
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