PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Novel model for emptying of a self-pressurised nitrous oxide tank

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Nitrous oxide is often used in the space industry, as an oxidiser or monopropellant, mostly in self-pressurised configurations. It has potential for growth in use due to the recent rising interest in green propellants. At the same time, modelling the behaviour of a self-pressurising nitrous oxide tank is a challenging task, and few accurate numerical models are currently available. Two-phase flow, heat transfer and rapid changes of mass and temperature in the investigated system all increase the difficulty of accurately predicting this process. To get a get better understanding of the emptying of a self-pressurised nitrous oxide tank, two models were developed: a phase equilibrium model (single node equilibrium), treating the control volume as a single node in equilibrium state, and a phase interface model, featuring a moving interface between parts of the investigated medium. The single node equilibrium model is a variation of equilibrium model previously described in the literature, while the phase interface model involves a novel approach. The results show that the models are able to capture general trends in the main parameters, such as pressure or temperature. The phase interface model predicts nitrous oxide as a liquid, a two-phase mixture, and vapour in the lower part of the tank, which is reflected in the dynamics of changes in pressure and mass flow rate. The models developed for self-pressurisation, while created for predicting nitrous oxide behaviour, could be adapted for other media in conditions near vapour– liquid equilibrium by adding appropriate state equations.
Rocznik
Strony
141--173
Opis fizyczny
Bibliogr. 21 poz., rys.
Twórcy
  • The Szewalski Institute of Fluid Flow Machinery, Polish Academy of Sciences, Fiszera 14, 80-231 Gdańsk, Poland
  • The Szewalski Institute of Fluid Flow Machinery, Polish Academy of Sciences, Fiszera 14, 80-231 Gdańsk, Poland
Bibliografia
  • [1] Zilliac G., Waxman B.S., Karabeyoglu A.M., Cantwell B., Evans B.J.: Peregrine hybrid rocket motor development. In: Proc. 50th AIAA/ASME/SAE/ASEE Joint Propulsion Conf., 2014.
  • [2] Rajesh K.K.: Thrust modulation in a nitrous oxide/hydroxyl-terminated polybutadiene hybrid rocket motor. In: Proc. 42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conf. Exhibit., Sacramento, 2006.
  • [3] Tiliakos N., Tyll J., Herdy R., Sharp D., Moser M., Smith N.: Development and testing of a nitrous oxide/propane rocket engine. In: Proc. 37th Joint Propulsion Conf. Exhibit., 2001.
  • [4] Mikielewicz D., Jakubowska B.: Prediction of flow boiling heat transfer coefficient for carbon dioxide in minichannels and conventional channels. Arch. Thermodyn.37(2016), 2, 89–106.
  • [5] Scherson Y.D., Lohner K., Lariviere B., Cantwell B., Kenny T.: A monopropellant gas generator based on N2O decomposition for "green" propulsion and power generation. In: Proc. 45th AIAA/ASME/SAE/ASEE Joint Propulsion Conf. Exhibit., 2009.
  • [6] Hennemann L., de Andrade J.C., de Souza Costa F.: Experimental investigation of a monopropellant thruster using nitrous oxide. J. Aerosp. Technol. Manage. 6(2014), 4, 363–372.
  • [7] Winter A., Marchetta J.: Simulating self-pressurization in propellant tanks. In: Proc. 48th AIAA Aerospace Sciences Meet. New Horizons Forum and Aerospace Exposition, Orlando, 2010.
  • [8] Sanalkumar B.G, Jesna S.B.G.M., Roy K.R.: Numerical investigation on self pressurisation of cryogenic storage tanks. Int. J. Sci. Eng. Res. (IJSER) 5(2014), 7,897–900.
  • [9] Casalino L., Pastrone D.: Optimal design of hybrid rockets with self-pressurizing oxidizer. In: Proc. 42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conf. Exhib., Sacramento, 2006.
  • [10] Zakirov V.A., Li L.: Homogeneous Liquefied Gas Self-Pressurization Model, In: Proc. Eur. Conf. Aerospace Sciences (EUCASS), 2005.
  • [11] Zimmerman J.E., Waxman B.S., Cantwell B.J.: Review and evaluation of models for self-pressurizing propellant tank dynamics. In: Proc. 49th AIAA/ASME/SAE/ASEE Joint Propulsion Conf., 2013.
  • [12] Zilliac G., Karabeyoglu M.A.: Modeling of propellant tank pressurization. In: Proc. 41st AIAA/ASME/SAE/ASEE Joint Propulsion Conf. Exhibit., 2005.
  • [13] Zimmerman J.E., Waxman B.S., Cantwell B.J.: Comparison of nitrous oxide and carbon dioxide with applications to self-pressurizing propellant tank expulsion dynamics. In: Proc. 60th JANNAF Propulsion Meet., 2013.
  • [14] Yasuda K., Nakata D., Okada K., Uchiumi M., Higashino K., Imai R.: N2O tank emptying characteristics on a running rocket sled. In: Proc. AIAA Propulsion and Energy Forum, 9-11 July 2018.
  • [15] Song C., Xu W. Shen C.: Temperature stratification in a self-pressurized nitrous oxide tank. J. Propul. Power (JPP) 32(2016), 2.
  • [16] Kardaś D., Szymborski J.: Development of a novel model for emptying of a selfpressurising nitrous oxide tank. J. Phys. Conf. Ser. 1781(2021), 1, 1–12.
  • [17] NIST Reference Fluid Thermodynamic and Transport Properties — REFPROP. NIST Standard Reference Database 23, Version 9.1, 2013.
  • [18] Yefeng Z., Panxing K., Zhengliang H., Pan Y., Jingyuan S., Jingdai W., Yongrong Y.: Experimental measurement and theoretical analysis on bubble dynamic behaviors in a gas-liquid bubble column. Chem. Eng. Sci. 211(2020), 115295–115306.
  • [19] Bergman T.L., Lavine AS., Incropera F.P., Dewitt D.P.: Introduction to Heat Transfer. Wiley, 2011.
  • [20] Dyer J., Doran E., Dunn Z., Lohner K.: Modeling feed system flow physics for selfpressurizing propellants. In: Proc. 43rd AIAA/ASME/SAE/ASEE Joint Propulsion Conf. Exhibit., 2007.
  • [21] Zimmerman J.E., Cantwell B., Zilliac G.: Initial experimental investigations of selfpressurizing propellant dynamics. In: Proc. 48th AIAA/ASME/SAE/ASEE Joint Propulsion Conf. Exhibit., Atlanta, 2012.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-994e529a-beee-4a34-9feb-3befda352195
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.