PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Impact of envelope structure on the solutions of thermal insulation from the inside

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The article presents chosen issues related to the heat insulation of complex structure walls. Subjects covered in this study are building partitions that had been constructed in the so called “Prussian wall” technique and are located in the Upper Silesia region. Their technical condition as well as usable state are not satisfactory, especially in the light of thermal protection. One way of increasing their standard is insulating partitions. In case of historical monuments or rich architectural facades, typical insulation methods (the ETICS system) will not apply. Thus, the solution is to insulate external walls on the inside surface. This, however, causes moisture content difficulties, which means that steam diffusing through partition undergoes the process of condensation. The authors suggest their own solutions to the problem of insulating diverse external partitions and base them on the research conducted in situ. They use The School ofMusic in Gliwice as an example. The measurement results obtained here were used in “heat-water content” modeling of walls for which WUFI 2D programme was applied. As shown in numerical analysis, the thickness and the sort of insulating layer have a key impact on the partition water content including wooden elements of construction. In case of walls that are 25 cm thick, the water content in the wall itself and wooden elements increased alongside the insulation material thickness, but it did not excess the permissible level, otherwise wood degradation would ensue. For “Prussian walls” that are 12 cm thick and insulated on the inside we observe exceeding the level of 20% water content, which is critical for wood durability. These results present elementary problems that occur when buildings with “Prussian walls” construction undergo thermo insulation. Restoration process must be a compromise between the need to retain the historical aspect of a building and the need to bring them to modern heat and usability standards. On the basis of numerical analysis, possible solutions, which meet these criteria, have been proposed.
Rocznik
Strony
123--134
Opis fizyczny
Bibliogr. 25 poz.
Twórcy
  • Faculty of Civil Engineering, Silesian University of Technology, Akademicka 5, 44-100 Gliwice, Poland
  • Faculty of Civil Engineering, Silesian University of Technology, Akademicka 5, 44-100 Gliwice, Poland
Bibliografia
  • 1] Rozporządzenie Ministra Infrastruktury z dn. dnia 12 kwietnia 2002 r. w sprawie warunków technicznych jakim powinny odpowiadać budynki i ich usytuowanie (Dz. U. nr 75. poz. 690). z późniejszymi zmianami (Regulation of the Minister of Infrastructure dated on April 12, 2002, on technical conditions which should be met by buildings and their location (Journal of Laws No. 75, item 690). with later changes).
  • [2] Hens H. (1998). Performance prediction for masonry walls with inside insulation using calculation procedures and laboratory testing. Journal of Thermal Envelope and Building Science 22, 32-48.
  • [3] Nowoświat A., Pokorska-Silva I. (2018). The influence of thermal mass on the cooling off process of buildings. Perioica Polytechnica Civil Engineering, 62, 173-179.
  • [4] Stopp H., Strangeld P., Fechner H., Häupl P. (2016). The Hygrothermal Performance of External Walls with Inside Insulation. Buildings VIII/Wall Performance—Practices, 1-13.
  • [5] Straube J.F., Schumacher C.J. (2007). Interior insulation retrofits of load-bearing masonry walls in cold climates. Journal of Green Buildings 2, 42-50.
  • [6] Straube J.F., Ueno K., Schumacher C.J. (2012). Building Science Corporation; Measure Guideline: Internal Insulation of Masonry Walls. U.S. Department of Energy.
  • [7] Fechner H., Häupl P., Stopp H., Strangfeld P. (1999). Measurements and numerical simulation of the heat and moisture transfer in envelope parts of buildings. Proceedings of the International Conference on Thermophysical Properties of Materials. Singapore.
  • [8] Akram A. H., Wallentén P. (2017). Hygrothermal assessment of internally added thermal insulation on external brick walls in Swedish multifamily buildings. Building and Environment., 123, 351-362.
  • [9] Walker R., Pavía S. (2015). Thermal performance of a selection of insulation materials suitable for historic buildings. Journal of Building and Environment, 94, 155-165.
  • [10] Orlik-Kożdoń B., Steidl T. (2017). Impact of internal insulation on the hygrothermal performance of brick wall. Journal of Building Physics, 41, 120-134.
  • [11] Szymanowska- Gwiżdż A., Steidl T. (2016). Impact of building walls of historic objects from half-timbered wall in their state of thermal protection. Civil and Environmental Engineering Reports, 20(1), 171-178.
  • [12] Szymanowska-Gwiżdż A., Orlik-Kożdoń B., Krause P., Steidl T. (2016). Zmiany zawilgocenia przegród budynków historycznych przy zadanych warunkach klimatu zewnętrznego (Changes of the moisture in the partitions of historical buildings under given external climate conditions). Journal of Civil Engineering Environmental and Architecture, 63, 589-596.
  • [13] Radoń J., Künzel H., Olesiak J. (2006). Problemy cieplno-wilgotnościowe przy renowacji ścian budynków z muru pruskiego (Thermal and moisture problems during the renovation of walls of half-timbered buildings). Acta Scientarum Polonorum, Architektura, 5, 45-53.
  • [14] Radoń J., Künzel H. (2004). Zalety stosowania paroizolacji wspierających proces wysychania (The advantages of using a vapor barrier to support the drying process). Warstwy dachy ściany, 4, 98-103.
  • [15] DIN 4108-3 Klimabedingter Feuchteschutz; Anforderungen, Berechnungsverfahren und Hinweise für Planung und Ausführung Enthält Randbedingungen und Rechenvorschriften für das Glaser-Verfahren (Climate-related moisture protection; Requirements, calculation methods and notes for planning and execution. Contains boundary conditions and calculation rules for the Glaser method).
  • [16] Wójcik R. (2017). Docieplanie budynków od wewnątrz (Thermal insulation from the inside). Grupa MEDIUM.
  • [17] Künzel H. (2015):. Criteria defining rain protection external rendering systems. Energy Procedia, 78, 2524-2529.
  • [18] Kozakiewicz P., Matejak M. (2013). Klimat a drewno zabytkowe. Dawna i współczesna wiedza o drewnie (Climate and antique wood. Old and contemporary knowledge of wood). Warszawa, Wydawnictwo SGGW.
  • [19] Künzel H. (2011). Schäden an Fassadenputzen. Stuttgart, Fraunhofer IRB Verlag.
  • [20] Innendämmung nach WTA I Planungsleitfaden, Referat 6 Bauphysik und Bauchemie, Wissenschaftlich-Technische Arbeitsgemeinschaft für Bauwerkserhaltung und Denkmalpflege e.V. (Interior insulation according to WTA I Planning Guidelines, Unit 6 Building Physics and Construction Chemicals, Scientific and Technical Association for Building Conservation and Historic Preservation), Fraunhofer IRB Verlag, Stuttgart, 2009.
  • [21] Karsten R. (1992). Bauchemie: fur stadium und praxis (Construction chemistry: for stadium and practice).
  • [22] Orlik-Kożdon B., Steidl T. (2018). Projektowanie izolacji cieplnej od wewnątrz z uwagi na wodochłonność elewacji (Designing thermal insulation from the inside due to the water absorption of the facade), Materiały budowlane 1, 44-48.
  • [23] Künzel, H.M. (1995). Simultaneous Heat and Moisture Transport in Building Components. Oneand two-dimensional calculation using simple parameters. IRB Verlag.
  • [24] ISO 10211: 2017. Thermal bridges in building construction — Heat flows and surface temperatures — Detailed calculations.
  • [25] ISO 13788:2012 Hygrothermal performance of building components and building elements - Internal surface temperature to avoid critical surface humidity and interstitial condensation - Calculation methods.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-99458d94-d871-4543-8dfa-218dabf28e21
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.