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An analysis is made to study a three dimensional MHD boundary layer flow and heat transfer due to a porous 
axisymmetric shrinking sheet. The governing partial differential equations of momentum and energy are 
transformed into self similar non-linear ordinary differential equations by using the suitable similarity 
transformations. These equations are, then solved by using the variational finite element method. The flow 
phenomena is characterised by the magnetic parameter M, suction parameter S, porosity parameter pK , heat 

source/sink parameter Q, Prandtl number Pr, Eckert number Ec and radiation parameter Rd. The numerical results 
of the velocity and temperature profiles are obtained and displayed graphically. 
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1. Introduction 
 
 The flow over a stretching/shrinking surface is an important problem in many engineering processes 
with applications in industries such as extrusion, melt-spinning, hot rolling, wire drawing, glass-fiber 
production, manufacture of plastic and rubber sheets, and cooling of a large metallic plate in a bath, which 
may be an electrolyte. In industry, polymer sheets and filaments are manufactured by continuous extrusion of 
the polymer from a die to a windup roller, which is located at a finite distance away. The thin polymer sheet 
constitutes a continuously moving surface with a nonuniform velocity through an ambient fluid. Sakiadis [1] 
was the first one to analyze the boundary layer flow on continuous surfaces. After that, Crane [2] studied the 
boundary layer flow past a stretching plate. Grubka [3] studied the heat transfer characteristics of a 
continuous stretching surface with variable temperature. Gupta and Gupta [4] investigated heat and mass 
transfer on a stretching sheet with suction and blowing. The boundary layer flow of an incompressible 
viscous fluid over a shrinking sheet has received considerable attention of modern day researchers because of 
a its increasing application to many engineering systems. Wang [5] first pointed out the flow over a 
shrinking sheet when he was working on the flow of a liquid film over an unsteady stretching sheet. The 
existence and uniqueness of steady viscous flow due to a shrinking sheet was established by Miklavcic and 
Wang [6] and they concluded that for some specific value of suction at the sheet, dual solutions exist and 
also in certain range of value of suction, no boundary layer solution exists. Fang and Zhang [7] recently 
investigated the heat transfer characteristics of the shrinking sheet problem with a linear velocity. Later on, 
Noor et al. [8] studied the MHD viscous flow due to shrinking sheet using the Adomian decomposition 
Method (ADM) and they obtained a series solution. Sajid and Hayat [9] applied the homotopy analysis 
method for the MHD viscous flow due to a shrinking sheet. Midya [10] studied the magnetohydrodynamic 
viscous flow and heat transfer over a linearly shrinking porous sheet. Muhaimin et al. [11] studied the effect 
of chemical reaction, heat and mass transfer on nonlinear MHD boundary layer past a porous shrinking sheet 
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with suction. Following these works, some very important investigations in this direction were made (see 
[12]-[15]). 

 Viscous dissipation changes the temperature distributions by playing a role of an energy source, 
which leads to affected heat transfer rates. The merit of the effect of viscous dissipation depends on whether 
the plate is being cooled or heated. Viscous dissipation effects are usually ignored in macro scale systems, in 
laminar flow in particular, except for very viscous liquids at comparatively high velocities. However, even 
for common liquids at laminar Reynolds numbers, frictional effects in micro scale systems may change the 
energy equation [16]. Gebhart [17] studied the effects of viscous dissipation for external natural convection 
flow over a surface. Koo and Kleinstreuer [18] have investigated the effects of viscous dissipation on the 
temperature field using dimensional analysis and experimentally validated computer simulations. 

 The heat source/sink effects in thermal convection are significant where there may exist high 
temperature differences between the surface (e.g., space craft body) and the ambient fluid. For physical 
situations, the average behaviour of heat generation or absorption can be expressed by some simple 
mathematical models because its exact modelling is quite difficult. The study of convective heat and mass 
transfer fluid flow over stretching/shrinking surface in the presence of thermal radiation, heat generation and 
chemical reaction is gaining a lot of attention. Sparrow and Cess [19] investigated the steady stagnation point 
flow and heat transfer in the presence of temperature dependent heat absorption. Later, Azim et al. [20] 
discussed the effect of viscous Joule heating on MHD-conjugate heat transfer for a vertical flat plate in the 
presence of heat generation. Tania et al. [21] investigated the effects of radiation, heat generation and viscous 
dissipation on MHD free convection flow along a stretching sheet. Chamkha [22] studied the effect of heat 
generation or absorption on hydro magnetic three-dimensional free convection flow over a vertical stretching 
surface. 

 The effect of radiation on an MHD flow and heat transfer problem have become more important 
industrially. At high operating temperature, the radiation effect can be quite significant. Many processes in 
engineering areas occur at high temperature and a knowledge of radiation heat transfer becomes very important 
for the design of the pertinent equipment. Nuclear power plants, gas turbines and the various propulsion devices 
for aircraft, missiles, satilites and space vehicles are examples of such engineering areas. The study of radiation 
effects on the various types of flows is quite complicated. In the recent years, many authors have studied 
radiation effects on the boundary layer of radiating fluids past a plate. Raptis [23] studied the flow of a 
micropolar fluid past a continuously moving plate by the presence of radiation. Cortell [24] studied the effects 
of viscous dissipation and radiation on the thermal boundary layer over a non-linear stretching sheet. The 
thermal radiation and heat generation effects on the MHD convective flow are a new dimension added to the 
study of stretching surface and has important applications in physics and engineering particularly in space 
technology and high temperature processes as it plays an important role in controlling the heat transfer process 
in polymer processing industry. The effect of radiation on heat transfer problems was studied by Hossain and 
Takhar [25], Takhar et al. [26]. Seddeek [27] analyzed the effects of radiation and variable viscosity on an 
MHD free convection flow past a semi-infinite flat plate with an aligned magnetic field. Hunegnew [28] 
studied the MHD boundary layer flow and heat transfer over a non-linearly stretching/shrinking sheet. Rajesh 
[29] investigated chemical reaction and radiation effects on the transient MHD free convection flow of 
dissipative fluid past an infinite vertical porous plate with ramped wall temperature.  

 Therefore, in the present paper, the dual solution of a three dimensional MHD boundary layer flow 
and heat transfer of an electrically conducting fluid due to a porous axisymmetric shrinking sheet with 
thermal radiation and heat source/sink, have been studied.  

 

2. Mathematical formulation 
 
 Consider a three-dimensional MHD viscous incompressible flow of an electrically conducting fluid due 
to a porous axisymmetric shrinking sheet coinciding with the plane z=0 and the flow is confined to z>0. The x 
and y axes are taken along the length and width of the sheet and the z-axis is perpendicular to the sheet, 
respectively (Fig.1). A constant magnetic field with strength 0B  is applied in the z-direction. The magnetic 
Reynolds number is taken to be small, so that the induced magnetic field is neglected and a suction is applied 
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normal to sheet to contain the vorticity. All the other fluid properties are assumed constant throughout the 
motion. 

 Under the usual boundary layer approximations, the basic governing boundary layer equations with 
viscous dissipation and heat source/sink are 
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where (u, v, w) are the velocity components along the (x, y, z) directions, respectively, p is the pressure, ϱ is 
the density of the fluid, μ is the dynamic viscosity, ν is the kinematic viscosity, σ is the electrical 
conductivity, 0B  is the magnetic induction, α is thermal conductivity, pc  is the specific heat at constant 

pressure and 0Q  is the volumetric rate of heat generation or absorption.  
 The boundary conditions applicable to the present flow are 
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where a>0 is the shrinking constant, U and V are the shrinking velocities, W>0 is the suction velocity, Tw is 

the sheet temperature and T  is the free stream temperature. 
 The Rosseland approximation for radiation is  
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where *  and *k  are the Stefan-Boltzmann constant and the mean absorption coefficient, respectively. It is 

assumed that the temperature differences within the flow, such as the term 4T , may be expressed as a linear 
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function of temperature. The Taylor series expanding for 4T  about a free stream temperature T  after 
neglecting higher-order terms  
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 Using Eqs (2.7) and (2.8) , we obtain  
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 Introducing the following similarity transformations  
 

  ( ),  ( ),  ( ),  ( ) ,  and  
w

T T a
u axf v ayf w 2 a f z

T T




             
 

 (2.10) 

 

Eq.(2.1) is identically satisfied by the similarity transformations while Eq.(2.4) becomes 
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Equations (2.2), (2.3) and (2.5) reduce as 
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 The corresponding boundary conditions are 
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 The physical quantity of interest is the local skin friction co-efficient fC  on the surface along the x 

and y directions, which are denoted by 
xf

C  and 
yfC , respectively and the local Nusslet number Nu, i.e., 

surface heat transfer are given by 
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where wx  and wy  are the wall shear stresses along the x and y directions, respectively and Rex
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 are the local Reynolds numbers. 

 
3. Method of solution 
 
 FEM is a numerical and computer-based technique of solving a variety of practical engineering 
problems that arise in different fields. It is recognized by developers and users as one of the most powerful 
numerical analysis tools ever devised to analyze complex problems of engineering. It has been applied to a 
number of physical problems, where the governing differential equations are available. The method 
essentially consists of assuming the piecewise continuous function for the solution and obtaining the 
parameters of the functions in a manner that reduces the error in the solution. 

 The entire flow domain is divided into 1000 linear elements of equal size. Each element has two 
nodes, and therefore, the whole domain contains 1001 nodes. At each node two functions are to be evaluated; 
hence after assembly of the element equations, we obtain a system of 2002 equations which are non-linear. 
Therefore, an iterative scheme must be utilized in the solution. After imposing the boundary conditions, a 
system of equations has been obtained which is solved by the Gauss elimination method while maintaining 

an accuracy of 510 .  
 

4. Results and discussion 
 
 To analyze the physical insight into the problem the numerical computations were carried out for 
governing parameters, namely: magnetic parameter M, suction parameter S, porosity parameter pK , heat 

source/sink parameter Q, Prandtl number Pr, Eckert number Ec, local Eckert numbers Ecx, Ecy and radiation 
parameter Rd. In ordered to illustrate the salient features of the model the numerical results are presented 
graphically in Figs 1-8.  

 Figure 1a shows that the effect of the magnetic parameter M in the dimensionless velocity profile f'. 
It is observed that the velocity profile at a point increases with the increase in M for the first solution and the 
velocity profile decreases with the increase in M for the second solution. Figure 1b is drawn to analyze the 
influence of magnetic parameter M on temperature. It can be seen from the figure that temperature at a point 
decreases with the increase of M for the first solution and the temperature profile increase with the increase 
of M for the second solution. This is the consequence of the fact that temperature field is influenced by the 
advection of the fluid velocity above the sheet. Interestingly, the effect of M on the second solution is very 
significant in comparison to the first solution.  
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 a. 

 
 b. 

 

 
Fig.1. Dual velocity and temperature profiles for various values of M. 

 
 Figures 2a and 2b are drawn respectively for velocity and temperature profiles for several values of 

the suction parameter S. The velocity profile f' is to increase with the effect of the suction parameter S for the 
first solution and opposite is true for the second solution. Furthermore, it is evident that in every case of dual 
solution of velocity profiles the momentum boundary layer thickness is larger than that of the first solution. 
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It follows from Fig.2b that the temperature profiles decrease with the increase of S for the first solution and 
temperature profiles increases with the increase of S for the second solution. It is important to note that the 
effect of suction is more significant in the second solution. 
 

 a. 

 
 b. 

 
 

Fig.2. Dual velocity and temperature profiles for various values of S. 
 

 Figures 3a and 3b have been plotted to demonstrate the effect of the porosity parameter pK  on dual 

velocity and temperature profiles respectively. For the first solution it is noticed that the velocity increases as 
the porosity parameter increases for the case of the first solution and the opposite result is noticed for the 
second solution. It is due to the fact that the increasing porosity causes the momentum boundary layer 
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thickness and consequently enhances the flow near the solid surface. The temperature profiles for selected 
values of pK  are presented in Fig.3b. It can be seen that with the increase of the porosity parameter pK  the 

temperature profiles decrease for first solution. It is also evident that with the increase of pK  the temperature 

profile increases significantly in the case of second solution. 
 

 a. 

 
 b. 

 
 

Fig.3. Dual velocity and temperature profiles for various values of Kp. 
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 The effect of the local Eckert numbers Ecx and Ecy on dual temperature profiles is shown in Figs 

4a and 4b respectively. It is evident from the figure that the temperature profiles increase with the 
increasing values of both Ecx and Ecy. However, the temperature field is effected by the local Eckert 
numbers more in the second solution when compared with the first solution. The dual temperature profiles 
for various values of the viscous dissipation parameter Ec is shown in Fig.5. The parameter Ec called the 
fluid motion controlling parameter. From the figure it is noticed that with the increase of Ec the 
temperature profiles increase for both solutions, this is due to the fact that viscous dissipation creates 
frictional heating which is stored in the fluid as heat energy and this heat energy increases the thickness of 
thermal boundary layer as result. The Eckert number Ec represents the relationship between kinetic energy 
in the flow and the enthalpy. It embodies the kinetic energy into internal energy by work done against the 
viscous fluid stresses. 

 From Fig.6 it can be observed that the temperature profiles increase with the increase of the radiation 
parameter Rd for both solutions: the effect of the radiation parameter Rd causes an increase in the radiative 
heat flux. 

 It is observed from Fig.7 that there exists a dual solution for different values of the Prandtl number 
Pr and it is evident that the temperature profiles decrease with the increase of the Prandtl number Pr. The 
dual temperature profiles for various values of the heat source/sink parameter Q are shown in Fig.8. It is 
observed that the temperature at a point in the boundary layer increases for an increasing heat source(Q>0) 
and the temperature profile decrease for an increase of heat sink (Q<0) and the thickness of the thermal 
boundary layer reduces the increase of the heat sink parameter but the thermal boundary layer increases with 
the heat source parameter. This result is very much significant for the flow where the heat transfer is given 
prime importance. 
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 b. 

 
 

Fig.4. Dual temperature profiles for various values of Ecx and Ecy. 
 

 
 

Fig.5. Dual temperature profile for various values of Ec. 
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Fig.6. Dual temperature profile for various values of Rd. 
 

 
 

Fig.7. Dual temperature profile for various values of Pr. 
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Fig.8. Dual temperature profile for various values of Q. 
 
Nomenclature 
 
 a – shrinking constant 
 0B  – magnetic induction 

 
xfC  – local skin friction coefficient 

 Ec – Eckert number 
 Ec ,Ecx y  – local Eckert numbers 

 f – dimensionless stream function 
 pK  – porosity parameter 

 M – magnetic field parameter 
 Nu – local Nusselt number 
 Pr – Prandtl number 
 Q – heat source/sink parameter 
 Rd – radiation parameter 
 Re ,Rex y  – local Reynolds numbers 

 S – suction parameter 
 T – fluid temperature 
 , ,u v w  – velocity components 

 , ,x y z  – Cartesian coordinates 

   – thermal diffusivity 
   – similarity independent variable 
   – dimensionless temperature 
   – dynamic viscocity 
   – kinematic viscosity of the fluid 
   – stream function 
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Subscripts 
 
 w – conditions at the wall 
   – ambient condition 
 
Superscripts 
 
  ' – prime denotes the derivative with respect to   
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