PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Stirred-tank leaching of coarse-grained waste, printed circuit boards with Acidithiobacillus ferrooxidans

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Stirred tank leaching of metals from coarse-grained waste, printed circuit boards (WPCB) used Acidithiobacillus ferrooxidans (A. ferrooxidans) at ambient temperature (20-35°C). The effect of the baffle size, WPCB concentration, and inoculation volume was tested. 95.92% of Cu, 93.53% of Al, 92.58% of Zn, 65.27% of Ni, and 95.33% of Sn in WPCBs were leached under the optimal conditions: no baffle, WPCB concentration of 5.0% (w/w), and inoculation volume of 5% (v/v). The alkaline substance and reactivity metal of WPCBs, and the oxidation of Fe2+, consume H+. Adding acid can maintain the pH value of the leaching solution, which is conducive to the growth and reproduction of the bacteria and improves the leaching efficiency of WPCBs. The second-order dynamics model can describe the acid consumption in the bioleaching process of coarse-grained WPCBs. Moreover, the Avrami equation can successfully explain the bioleaching kinetics of Cu, Al, Zn, Ni, and Sn from the coarse-grained WPCBs. The key factors controlling the bioleaching of coarse-grained WPCBs are metal reactivity and specific surface area. These results revealed that bioleaching metals from coarse-grained WPCBs using A.ferrooxidans is feasible, and has important significance to guiding its industrialization.
Rocznik
Strony
153--163
Opis fizyczny
Bibliogr. 27 poz., rys., wykr.
Twórcy
autor
  • Key Laboratory of Solid Waste Treatment and Resource Recycle, Ministry of Education, Southwest University of Science and Technology, Mianyang 621010, China
autor
  • Key Laboratory of Solid Waste Treatment and Resource Recycle, Ministry of Education, Southwest University of Science and Technology, Mianyang 621010, China
autor
  • Key Laboratory of Solid Waste Treatment and Resource Recycle, Ministry of Education, Southwest University of Science and Technology, Mianyang 621010, China
autor
  • Key Laboratory of Solid Waste Treatment and Resource Recycle, Ministry of Education, Southwest University of Science and Technology, Mianyang 621010, China
autor
  • Key Laboratory of Solid Waste Treatment and Resource Recycle, Ministry of Education, Southwest University of Science and Technology, Mianyang 621010, China
autor
  • Beijing Key Laboratory on Resource-oriented Treatment of industrial Pollutants, University of Science and TechnologyBeijing, Beijing 100083, China
Bibliografia
  • AWASTHI, A.K., ZLAMPARET, G.I., ZENG, X.L., LI, J.H., 2017. Evaluating waste printed circuit boards recycling: Opportunities and challenges. Waste Manag Res. 35, 346-356.
  • BIGUM, M., BROGAARD, L., CHRISTENSEN, T.H., 2012. Metal recovery from high-grade WEEE: a life cycle assessment. J. Hazard. Mater. 207-208, 8-14.
  • CORNELL, R.M., GIOVANOLI, R., 1993. Acid dissolution of hematites of different morphologies. Clay Miner. 28, 223-232.
  • EMMANUL, B., CHRISTOPHER, K., JONAS, A.M., WILLIAM, S., 2020. Comparison of the performance of different comminution technologies in terms of energy efficiency and mineral liberation. Miner. Eng. 156, 106454.
  • DEMIRKIRANA, N., KUNKUL, A., 2007. Dissolution kinetics of ulexite in perchloric acid solutions. Int. J. Miner. Process. 83, 76 – 80.
  • ERUST, C., AKCIL, A., TUNCUK, A., PANDA, S., 2020. Intensified acidophilic bioleaching of multi-metals from waste printed circuit boards (WPCBs) of spent mobile phones. J. Chem. Technol. Biotechnol. 95, 2272 - 2285.
  • FU, K.B., LIN, H., CHENG, H., MO, X.L. and DONG, Y.B., 2013. Bioleaching of djurleite using Acidithiobacillus ferrooxidans. Miner. Eng. 40, 8-41.
  • FU, K.B., LIN, H., MO, X.L., WANG, H., WEN, Z.L, WEN H.W., 2012. Comparative study of passivation layers of copper sulphides during bioleaching. Int. J. Miner. Metall. Mater. 19, 886-892.
  • GU, W. H., BAI, J.F., LU, L., ZHUANG, X.N., ZHAO J., YUAN W. Y., ZHANG, C.L., WANG, J.W., 2019. Improved bioleaching efficiency of metals from waste printed circuit boards by mechanical activation, Waste Manage. 98, 21-28.
  • HAGHSHENAS, D.F., ALAMDARI, E.K., BONAKDARPOUR, B., DARVISHI, D., NASERNEJAD, B., 2009. Kinetics of sphalerite bioleaching by Acidithiobacillus ferrooxidans. Hydrometallurgy, 99, 202-208.
  • LIANG, G., TANG, J., LIU, W., ZHOU, Q., 2013. Optimizing mixed culture of two acidophiles to improve copper recovery from printed circuit boards (PCBs). J. Hazard. Mater. 250-251, 238–245.
  • LI, H., EKSTEEN, J., ORABY, E., 2018. Hydrometallurgical recovery of metals from waste printed circuit boards (WPCBs): Current status and perspectives – A review, Resour. Conserv. Recy. 139, 122 – 139.
  • LI, J.Y., WEN J.X., GUO Y., AN N., LIANG C.J., GE Z.Y., 2020. Bioleaching of gold from waste printed circuit boards by alkali-tolerant Pseudomonas fluorescens, Hydrometallurgy 194, 105260.
  • LI, Y.B., QIAN G.J., LI, J., GERSON, A.R. 2015. Kinetics and roles of solution and surface species of chalcopyrite dissolution at 650 mV. Geochim. Cosmochimic. Ac. 161, 188–202
  • LUCIA, H. X., ELLEN, C.G., ANA, C.R., FERNANDO, A. F. L., 2019. Sustainability and the circular economy: A theoretical approach focused on e-waste urban mining, Resour. Policy, In Press, Corrected Proof, 101467.
  • MISHRA, D., KIM, D., RALPH, D., AHN, J., RHEE, Y., 2008. Bioleaching of spent hydroprocessing catalyst Rusing acidophilic bacteria and its kinetics aspect. J. Hazard. Mater. 152, 1082-1091.
  • QIU, R.J., LIN M., RUAN, J.J., FU, Y.G., HU J.Q., DENG, M.L., TANG Y.T., QIU R.L., 2020. Recovering full metal lic resources from waste printed circuit boards: A refined review, J. Clean. Prod. 244, 118690.
  • SASAKI, K., TAKATSUGI, K., HIRAJIMA, T., 2011. Effects of initial Fe2+ concentration and pulp density on the bioleaching of Cu from enargite by Acidianus brierleyi. Hydrometallurgy, 109, 153-160.
  • WANG, H.D., ZHANG, S.H., LI, B., PAN, A., ZUO, T.Y., 2017. Recovery of waste printed circuit boards through pyrometallurgical processing: A review, Resour. Conserv. Recy. 126, 209 – 218.
  • WEI, C., QIU, S., ZHOU, X.J., LI, C.X., DENG, Z.G., 2010. Kinetics of vanadium dissolution from black shale in pressure acid leaching. Hydrometallurgy 104, 193-200.
  • YANG M.J., LIU H., YE B., BIAN W., 2021. Recycling of printed circuit boards by abrasive waterjet cutting, Process Saf. Environ., In Press, Journal Pre-proof, https://doi.org/10.1016/j.psep.2021.01.052
  • YANG, Y.K., CHEN, S., LI, S.C., CHEN, M.J., CHEN, H.Y., LIU, B.J., 2014. Bioleaching waste printed circuit boards by Acidithiobacillus ferrooxidans and its kinetics aspect. J. Biotechnol. 173, 24 – 30.
  • YANG, Y.K., CHEN, S., YANG, D.S., ZHANG, W., WANG, H.J., ZENG, R.J., 2019. Anaerobic reductive bio-dissolution of jarosites by Acidithiobacillus ferrooxidans using hydrogen as electron donor. Sci. Total Environ. 686, 869–877.
  • YUAN, Z.H., RUAN, J.J., LI, Y. Y., 2018. A new model for simulating microbial cyanide production and optimizing the medium parameters for recovering precious metals from waste printed circuit boards. J. Hazard. Mater. 353, 135-141.
  • YU, Z.J., YU, R.L., LIU, A.J., LIU, J., ZENG, W.M., LIU, X.D., QIU, G.Z., 2017. Effect of pH values on extracellular protein and polysaccharide secretions of Acidithiobacillus ferrooxidans during chalcopyrite bioleaching. T. Nonferr. Metal. Soc. 27, 406 – 412.
  • ZHAO, M., LI, J.H., YU, K.L., ZHU, F.F., WEN, X.F., 2006. Measurement of pyrolysis contamination during crushing of waste printed circuit boards. J. Tsinghua Univ. ( Sci & Tech) 46, 1995-1998.
  • ZHU, X.N., NIE, C.C, WANG, S.S, XIE, Y., ZHANG, H., LYU, X.J., QIU, J., LI, L., 2020. Cleaner approach to the recycling of metals in waste printed circuit boards by magnetic and gravity separation, J. Clean. Prod. 2481, 119235.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-993cd44b-4ce9-402d-bd1f-8799d70685f2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.