Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The semiempirical rule, “Rule 07” specified in 2007 for P-on-n HgCdTe photodiodes has become widely popular within infrared community as a reference for other technologies, notably for III-V barrier photodetectors and type-II superlattice photodiodes. However, in the last decade in several papers it has been shown that the measured dark current density of HgCdTe photodiodes is considerably lower than predicted by benchmark Rule 07. Our theoretical estimates carried out in this paper support experimental data. Graphene and other 2D materials, due to their extraordinary and unusual electronic and optical properties, are promising candidates for high-operating temperature infrared photodetectors. In the paper their room-temperature performance is compared with that estimated for depleted P i-N HgCdTe photodiodes. Two important conclusions result from our considerations: the first one, the performance of 2D materials is lower in comparison with traditional detectors existing on global market (InGaAs, HgCdTe and type- II superlattices), and the second one, the presented estimates provide further encouragement for achieving low-cost and high performance HgCdTe focal plane arrays operating in high-operating temperature conditions.
Wydawca
Czasopismo
Rocznik
Tom
Strony
82--92
Opis fizyczny
Bibliogr. 51 poz., wykr., rys, tab.
Twórcy
autor
- Institute of Applied Physics, Military University of Technology, 2 Kaliskiego St., 00-908 Warsaw, Poland
autor
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, 500 Yu Tian Road, Shanghai 200083, China
autor
- Institute of Applied Physics, Military University of Technology, 2 Kaliskiego St., 00-908 Warsaw, Poland
autor
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, 500 Yu Tian Road, Shanghai 200083, China
Bibliografia
- [1] Iwert, O. & Delabrea, B. The challenge of highly curved monolithic imaging detectors. Proc. SPIE 7742, 774227-1-9 (2010).
- [2] Jeong, K.-H. Kim, J. & Lee, L. P. Biologically inspired artificial compound eyes. Science (80-.). 312, 557–561 (2006).
- [3] Song, Y. M., Xie, Y., Malyarchuk, V., Xiao, J., Jung, I., Choi, K.-J., Liu, Z., Park, H., Lu, C., Kim, R. H., Li, R., Crozier, K. B., Huang, Y. & Rogers, J. A. Digital cameras with designs inspired by the arthropod eye. Nature 497, 95–99 (2013).
- [4] Tang, X., Ackerman, M. M. & Guyot-Sionnest, P. Colloidal quantum dots based infrared electronic eyes for multispectral imaging. Proc. SPIE 11088, 1108803-1-7 (2019).
- [5] Lu, Q., Liu, W. & Wang, X. 2‐D material‐based photodetectors on flexible substrates. in Inorganic Flexible Optoelectronics: Materials and Applications (eds. Ma, Z. & Liu, D.) 117-142 (Wiley‐VCH Verlag, 20 19).
- [6] Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D., Zhang, Y., Dubonos, S. V., Grigorieva, I. V. & Firsov, A. A. Electric field effect in atomically thin carbon films. Science 306, 666-669 (2004).
- [7] Mounet, N., Gibertini, M., Schwaller, P., Merkys, A., Castelli, I. E., Cepellotti, A., Pizzi, G. & Marzari, N. Two-dimensional materials from high-throughput computational exfoliation of experimentally known compounds. Nat. Nanotechnol.13, 246-252 (2018).
- [8] Rogalski, A. Graphene-based materials in the infrared and terahertz detector families: a tutorial. Adv. Opt. Photonics 11, 314 (2019).
- [9] Rogalski, A., Kopytko, M. & Martyniuk, P. Two-dimensional infrared and terahertz detectors: Outlook and status. Appl. Phys. Rev. 6, 021316 (2019).
- [10] Tennant, W. E., Lee, D., Zandian, M., Piquette, E. & Carmody, M. MBE HgCdTe technology: A very general solution to IR detection, descibrd by ‘Rule 07’, a very convenient heuristic. J. Electron. Mater. 37, 1406-1410 (2008).
- [11] Lee, D., Carmody, M., Piquette, E., Dreiske, P., Chen, A., Yulius, A., Edwall, D., Bhargava, S., Zandian, M., & Tennant, W.E. High-operating temperature HgCdTe: A vision for the near future. J. Electron. Mater. 45, 4587-4595 (2016).
- [12] Rogalski, A., Kopytko, M. & Martyniuk, P. Performance prediction of p-i-n HgCdTe long-wavelength infrared HOT photodiodes. Appl. Opt. 57, D11 (2018).
- [13] Elliott, C. T., Gordon, N. T. & White, A. M. Towards background-limited, room-temperature, infrared photon detectors in the 3–13 μm wavelength range. Appl. Phys. Lett. 74, 2881–2883 (1999).
- [14] Robinson, J., Kinch, M., Marquis, M., Littlejohn, D. & Jeppson, K. Case for small pixels: system perspective and FPA challenge. Proc. SPIE 9100, 91000I-1-10 (2014).
- [15] Rogalski, A., Martyniuk, P. & Kopytko, M. Challenges of small-pixel infrared detectors: a review. Reports Prog. Phys. 79, 046501 (2016).
- [16] Holst G. C. & Lomheim, T. C. CMOS/CCD Sensors and Camera Systems. (JCD Publishing and SPIE Press, Winter Park, 2007).
- [17] Kinch, M.A. State-of-the-Art Infrared Detector Technology. (SPIE Press, Bellingham, 2014).
- [18] Holst, G. C. & Driggers, R. G. Small detectors in infrared system design. Opt. Eng. 51, 096401-1-10 (2012).
- [19] Kinch, M. S., Aqariden, F., Chandra, D., Liao, P.-K., Schaake, H. F. & Shih, H. D. Minority carrier lifetime in p-HgCdTe. J. Electron. Mater. 34, 880–884 (2005).
- [20] Gravrand, O., Rothman, J., Delacourt, B., Boulard, F., Lobre, C., Ballet, P. H., Santailler, J. L., Cervera, C., Brellier, D., Pere-Laperne, N., Destefanis, V. & Kerlain, A. Shockley-Read-Hall lifetime study and implication in HgCdTe photodiodes for IR detection. J. Electron. Mater. 47, 5680-5690 (2018).
- [21] Lee, D., Dreiske, P., Ellsworth, J., Cottier, R., Chen, A., Tallarico, S., Barr, H., Tcheou, H., Yulius, A., Carmody, M., Piquette, E., Zandian, M. & Dougla, S. Performance of MWIR and LWIR fully-depleted HgCdTe FPAs. (Extended Abstracts. The 2019 U.S. Workshop on the Physics and Chemistry of II-VI Materials, 189-190, 2019).
- [22] Konstantatos, G., Badioli, M., Gaudreau, L., Osmond, J. Bernechea, M., Garcia de Arquer, F. P., Gatti, F. & Koppens F. H. L. Hybrid graphene-quantum dot phototransistors with ultrahigh gain. Nat. Nanotechnol. 7, 363–368 (2012).
- [23] Wang, P., Xia, H., Li, Q., Wang, F., Zhang, L., Li, T., Martyniuk, P., Rogalski, A. & Hu, W. Sensing infrared photons at room temperature: from bulk materials to atomic layers. Small 46, 1904396 (2019).
- [24] Currie, M. Applications of graphene to photonics. (NRL/MR/5650-14-9550, 2014).
- [25] Furchi, M., Urich, A., Pospischil, A., Lilley, G., Unterrainer, K., Detz, H., Klang, P., Andrews, A. M., Schrenk, W., Strasser, G. & Mueller, T. Microcavity-integrated graphene photodetector. Nano Lett. 12, 2773–2777 (2012).
- [26] Ferreira, A., Peres, N. M. R., Ribeiro, R. M. & Stauber, T. Graphene-based photodetector with two cavities. Phys. Rev. B 85, 115438 (2012).
- [27] Zhang, Y., Liu, T., Meng, B., Li, X., Liang, G., Hu, X., & Wang, Q. J. Broadband high photoresponse from pure monolayer graphene photodetector. Nat. Commun. 4, 1811 (2013).
- [28] Gan, X., Shiue, R.-J., Yuanda, G., Meric, I., Heinz, T.F., Shepard, K., Hone, J., Assefa S. & Englund, D. Chip-integrated ultrafast graphene photodetector with high responsivity. Nat. Photonics 7, 883–887 (2013).
- [29] Chang, P.-H., Liu, S.-Y., Lan, Y-B., Tsai, Y.-C., You, X.-Q., Li, C.-S., Huang, K.-Y., Chou, A.-S., Cheng, T.-C., Wang, J.-K. & Wu, C.-I. Ultrahigh responsivity and detectivity graphene–perovskite hybrid phototransistors by sequential vapor deposition. Sci. Rep. 7, 46281 (2017).
- [30] Du, S., Lu, W., Ali, A., Zhao, P., Shehzad, K., Guo, H., Ma, L., Liu, X., Pi, X., Wang, P., Fang, H., Xu, Z., Gao, C., Dan, Y., Tan, P., Wang, H., Lin, C.-T., Yang, J., Dong, S., Cheng, Z., Li, E., Yin, W., Luo, J., Yu, B., Hasan, T., Xu, Y., Hu, W. & Duan, X. A broadband fluorographene photodetector. Adv. Mater. 29, 1700463 (2017).
- [31] Chen, Z., Li, X., Wang, J., Tao, L., Long, M., Liang, S.-J., Ang, L.K., Shu, C., Tsang, H. K. & Xu, J.-B. Synergistic effects of plasmonics and electron trapping in graphene short-wave infrared photodetectors with ultrahigh responsivity. ACS Nano 11, 430−437 (2017).
- [32] Cakmakyapan, S., Lu, P. K., Navabi, A. & Jarrahi, M. Gold-patched graphene nano-stripes for high-responsivity and ultrafast photodetection from the visible to infrared regime. Light Sci. Appl. 7, 20 (2018).
- [33] Wang, F., Wang, Z., Yin, L., Cheng, R., Wang, J., Wen, Y., Shifa, T. A., Wang, F., Zhang, Y., Zhan, X., & He, J. 2D library beyond graphene and transition metal dichalcogenides: a focus on photodetection. Chem. Soc. Rev. 47, 6296–6341 (2018).
- [34] Long, M., Gao, A., Wang, P., Xia, H., Ott, C., Pan, C., Fu, Y., Liu, E., Chen, X., Lu, W., Nilges, T., Xu, J., Wang, X., Hu, W. & Miao, F. Room temperature high-detectivity mid-infrared photodetectors based on black arsenic phosphorus. Sci. Adv. 3, e1700589 (2017).
- [35] Buscema, M., Islan, J. O., Groenendijk, D. J., Blanter, S. I., Steele, G. A., van der Zant, H. S. J. & Castellanos-Gomez, A.”Photocurrent generation with two-dimensional van der Waals semiconductor. Chem. Soc. Rev. 44, 3691-3718 (2015).
- [36] Wang, J., Fang, H., Wang, X., Chen, X., Lu, W. & Hu, W. Recent progress on localized field enhanced two-dimensional material photodetectors from ultraviolet-visible to infrared. Small 13, 1700894 (2017).
- [37] Long, M., Wang, P., Fang, H. & Hu, W. Progress, challenges, and opportunities for 2D material based photodetectors. Adv. Funct. Mater. 29, 1803807 (2018).
- [38] Ashley, T. & Elliott, C. T. Non-equilibrium mode of operation forinfrared detection. Electron. Lett. 21, 451–452 (1985).
- [39] Elliott, C. T. Non-equilibrium mode of operation of narrow-gapsemiconductor devices. Semicond. Sci. Technol. 5, S30–7 (1990).
- [40] HOT MCT Detectors, http://www.teledynejudson.com/
- [41] https://vigo.com.pl/wp-content/uploads/2017/06/VIGO-Catalogue.pdf
- [42] Huang, W., Rassela, S. M. S., Li, L., Massengale, J.A., Yang, R.Q., Mishima, T. D. & Santos, M.B. A unified figure of merit for interband and intersubband cascade devices. Infrared Phys. Technol. 96, 298-301 (2019).
- [43] Amani, M., Regan, E., Bullock, J., Ahn, G. H. & Javey, A. Mid-wave infrared photoconductors based on black phosphorus-arsenic alloys. ACS Nano 11, 11724–11731 (2017).
- [44] Long, M., Wang, Y., Wang, P., Zhou, X., Xia, H., Luo, C., Huang,S., Zhang, G., Yan, H., Fan, Z., Wu, X., Chen, X., Lu, W. & Hu, W. Palladium diselenide long-wavelength infrared photodetector with high sensitivity and stability. ACS Nano 13, 2511−2519 (2019).
- [45] Ye, L., Wang, P., Luo, W., Gong, F., Liao, L., Liu, T., Tong, L.,Zang, J., Xu, J. & Hu, W. Highly polarization sensitive infrared photodetector based on black phosphorus-on-WSe2 photogate vertical heterostructure. Nano Energy 37, 53-60 (2017).
- [46] Yu, X., Yu, P., Wu, D., Singh, B., Zeng, Q., Lin, H., Zhou, W., Lin,J., Suenaga, K., Liu, Z. & Wang, Q. J. Atomically thin noble metal dichalcogenide: a broadband mid-infrared semiconductor. Nat. Commun. 9, 1545 (2018).
- [47] Rogalski, A., Martyniuk, P. & Kopytko, M. Type-II superlatticephotodetectors versus HgCdTe photodiodes. Prog. Quantum Electron. 68, 100228 (2019).
- [48] Wang, X., Sun, Y. & Liu, K. Chemical and structural stability of 2D layered materials. 2D Mater. 6, 042001 (2019).
- [49] Konstantatos, G. Current status and technological prospect ofphotodetectors based on two-dimensional materials. Nat. Commun.9, 5266 (2018).
- [50] Konstantatos, G. & Sargent, E. H. Solution-processed quantum dotphotodetectors. Proc. IEEE 97, 1666-1683 (2009).
- [51] Guyot-Sionnest, P., Ackerman, M. M. & Tang, X. Colloidalquantum dots for infrared detection beyond silicon. J. Chem. Phys.151, 060901 (2019).
Uwagi
1. This work was supported by the funds granted to the Faculty of Advanced Technologies and Chemistry, Military University of Technology, within the subsidy for maintaining research potential in 2020, grant no. UGB763.
2. Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9939cff2-b339-4896-887e-0094e4eedfb7