PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Electron paramagnetic resonance study of impurities and point defects in oxide crystals

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this topic review the results of the X-band electron paramagnetic resonance (EPR) measurements of Mn, Co, Cr, Fe ions in YAlO₃ (YAP) crystals and Fe ions in LiNbO₃ (LNO) crystals and of chromium doped Bi₁₂GeO₂₀ (BGO) and Ca₄GdO(BO₃)₃ single crystals, are presented. It is well known that the oxide crystals (for example:YAP, LNO, BGO) are one of the most widely used host materials for different optoelectronic applications. The nature of point defect of impurities and produced in the oxide crystal after irradiation by bismuth ions and after irradiation by the ²³⁵U ions with energy 9.47 MeV/u and fluency 5 × 10¹¹ cm⁻¹ is discussed. The latter is important for applications of these oxide crystal as laser materials.
Rocznik
Strony
81--91
Opis fizyczny
Bibliogr. 73 poz., rys., tab., wykr.
Twórcy
autor
  • Centre for Microelectronics and Nanotechnology, University of Rzeszow, ul. Pigonia 1, 35-959 Rzeszow, Poland
Bibliografia
  • [1] G.B. Loutts, M. Warren, L. Taylor, R.R. Rakhimov, H.R. Ries, G. Miller, M.A. Noginov, M. Curley, N. Noginova, N. Kukhtarev, H.J. Caulfield, P. Venkateswarlu, Manganese-doped yttrium orthoaluminate: a potential material for halographic recording and data storage, Phys. Rev. B 57 (7) (1998) 3706–3709.
  • [2] Ya. Zhydachevskii, A. Durygin, A. Suchocki, A. Matkovskii, D. Sugak, G.B. Loutts, M.A. Noginov, Radiation and thermally induced effects in YAlO3:Mn crystals, J. Lumin. 109 (1) (2004) 39–49.
  • [3] R.R. Rakhimov, A.L. Wilkerson, G.B. Loutts, M.A. Noginov, N. Noginova, W. Lindsay, H.R. Ries, Spin and valence states of manganese ions in manganese-doped yttrium orthoaluminate, Solid State Commun. 108 (8) (1998) 549–554.
  • [4] L. Vasylechko, A. Matkovskii, D. Savytski, A. Suchocki, F. Wallrafen, Crystal structure of GdFeO3-type rare earth gallates and aluminates, J. Alloys Compd. 291 (1–2) (1999) 57–65.
  • [5] M.A. Noginov, G.B. Loutts, Spectroscopic studies of Mn4+ ions in yttrium orthoaluminate, J. Opt. Soc. Am. B 16 (1) (1999) 3–11.
  • [6] M.A. Noginov, G.B. Loutts, M. Warren, Spectroscopic studies of Mn3+ and Mn2+ ions in YAlO3, J. Opt. Soc. Am. B 16 (3) (1999) 475–483.
  • [7] Ya. Zhydachevskii, A. Durygin, A. Suchocki, A. Matkovskii, D. Sugak, P. Bilski, S. Warchol, Mn-doped YAlO3 crystal: a new potential TLD phosphor, Nuclear Inst. Methods Phys. Res. B 227 (4) (2005) 545–550.
  • [8] I.F. Elder, M.J. Payne, Lasing in diode-pumped Tm:YAP, Tm, Ho:YAP and Tm, Ho:YLF, Opt. Commun. 145 (1–6) (1998) 329–339.
  • [9] A.A. Kaminskii, Laser Crystals, Springer, Heidelberg, Berlin, 1990.
  • [10] A.J. Wojtowicz, J. Glodo, A. Lempicki, C. Brecher, Recombination and scintillation processes in YAlO3:Ce, J. Phys. Condens. Matter 10 (1998) 8401–8415.
  • [11] A. Senyshyn, L. Vasylechko, Low temperature crystal structure behaviour of complex yttrium aluminium oxides YAlO3 and Y3Al5O12, Acta Phys. Polon. A 124 (2) (2013) 329–335.
  • [12] Z. Mierczyk, Nonlinear Absorbers The investigation of Features, Technology and Selected Applications, WAT Press, Warsaw, 2000, in Polish.
  • [13] S. Gołab, Z. Mierczyk, W. Ryba-Romanowski, Investigation of nonlinear absorption of LaGaO3: Co Crystals near 1.5 µm, Phys. Status Solidia 179 (2) (2000) 463–468.
  • [14] K. Yumashev, I. Denisov, N. Posnov, P. Prokoshin, V. Mikhailov, Nonlinear absorption properties of Co2+:MgAl2O4 crystal, Appl. Phys. B 70 (2000) 179–184.
  • [15] P. Aleshevych, M. Berkowski, W. Ryba-Romanowski, H. Szymczak EPR and optical spectra of cobalt in SrLaAlO4, Phys. Status Solidi b 218 (2000) 521–526.
  • [16] M. Kaczmarek, M. Berkowski, J. Fink-Finowicki, M. Kwasny, M. Palczewska, S. Warchoł, Growth and Characterization of SrLaGO7 single crystals highly doped with Co, Prace ITME 56 (151) (2000) a3 (in Polish).
  • [17] M. Yamaga, H. Takeuchi, T.J. Han, B. Henderson, Electron paramagnetic resonance and optical spectra of Cr3+ –doped YAlO3, J. Phys. Condens. Matter 5 (1993) 8097–8104.
  • [18] R.F. Belt, J.R. Latore, R. Uhrin, EPR and optical study of Fe in Nd:YAlO3 laser crystals, Appl. Phys. Lett. 25 (1974) 218–220.
  • [19] M. Yamaga, T. Yosida, B. Henderson, K. O’Donnell, M. Date, Electro paramagnetic resonance and optical spectra of Ti3+-doped YAlO3, J. Phys. Condens. Matter 4 (1992) 7285–7294.
  • [20] R.R. Rakhimov, E.M. Jackson, D.E. Jones, G.B. Loutts, Low-field microwave response and electron paramagnetic resonance identification of valence states of manganese including octahedral Mn5+ in YAlO3 and CaYAlO4, J. Appl Phys. 95 (2004) 5653–5660.
  • [21] G.R. Asatryan, J. Rosa, EPR of Er3+, Nd3+, and Ce3+ ions in YAlO3 single crystals, Phys. Solid State 44 (2002) 864–869.
  • [22] G.R. Asatryan, J. Rosa, J.A. Mares, EPR studies of Er3+, Nd3+ and Ce3+ in YAlO3 single crystals, Solid State Commun. 104 (1997) 5–9.
  • [23] R. Jablonski, Z. Frukacz, Electron-spin-resonance study of Nd3+ and Er3+ ions in YAlO3, Acta Phys. Polon. A 90 (2) (1996) 339–343.
  • [24] D. Sugak, A. Matkovskii, D. Savytskii, A. Durygin, A. Suchocki, Y. Zhydachevskii, I. Solskii, I. Stefaniuk, F. Wallrafen, Growth and induced color centers in YAlO3-Nd single crystals, Phys. Stat. Sol. (a) 184 (No. 1) (2001) 239–250.
  • [25] I. Stefaniuk, W. Obermayr, M. Rozborska, A. Matkowski, M. Kuzma, EPR study of Nd3+ impurities in YAlO3 single crystals, Mol. Phys. Rep. 37 (2003) 127–131.
  • [26] I. Stefaniuk, A. Matkovskii, C. Rudowicz, A. Suchocki, Z. Wilamowski, T. Lukasiewicz, Z. Galazka, Electron paramagnetic resonance studies of cobalt and rare-earth impurity ions in YAlO3, J. Phys. Condens Matter 18 (2006) 4751–4761.
  • [27] I. Stefaniuk, C. Rudowicz, P. Gnutek, A. Suchocki, EPR study of Cr3+ and Fe3+ impurity ions in nominally pure and Co2+-doped YAlO3 single crystals, Appl. Magn. Reson. 36 (2–4) (2009) 371–380.
  • [28] I. Stefaniuk, I. Rogalska, A. Suchocki, M. Berkowski, B. Cieniek, P. Potera, Electron paramagnetic resonance studies of manganese and cobalt ions in YAlO3 crystals, Opt. Appl. XLIV (1) (2014) 113–121.
  • [29.] A. Rauber, in: E. Kaldis (Ed.), Chemistry and Physics of Lithium Niobate, Current Topics in Material Science, 1987, Amsterdam North Holland.
  • [30] F. Agullo-Lopez, J.M. Cabrera, Properties of Lithium Niobate, EMIS Data reviews Series No. 5 INSPEC, 1989, London.
  • [31] M.S. McPherson, I. Ostrovskii, M.A. Breazeale, Observation of acoustical memory in LiNbO3, Phys. Rev. B 89 (2002) 115506–115508.
  • [32] D.J. Keeble, M. Loyo-Menoyo, Electron paramagnetic resonance of Fe3+ in LiNbO3, Phys. Rev. B 71 (2005) 224111–224118.
  • [33] D. Xue, K. Kitamura, J. Wang, Atomic packing and octahedral linking model of lithiumniobate single crystals, Opt. Mater. 23 (2003) 399–402.
  • [34] G.I. Malovichko, V.G. Vrachev, O.F. Schirmer, B. Faust, New axial Fe3+ centres in stoichiometric lithium niobate crystals, J. Phys. Condens Matter 5 (1993) 3971–3976.
  • [35] T.H. Yeom, S.H. Choh, Y.M. Chang, C. Rudowicz, Experimental and theoretical investigation of spin-hamiltonian parameters for the low symmetry Fe3+ centre in LiNbO3, Phys. Status Solidi B 185 (1994) 409–415.
  • [36] V.G. Grachev, G.I. Malovichko, Determination of the point symmetry of defects in crystals exhibiting structural phase transitions, using the temperature dependencies of the EPR spectra. Impurities in LiNbO3, Sov. Phys Solid State 27 (1985) 686–689.
  • [37] H. Rajbenbach, J. Huignard, Self-induced coherent oscillations with photorefractive Bi12SiO20 amplifier, Opt. Lett. 10 (1985) 137–139.
  • [38] M. Miteva, N. Dushkina, M. Gospodinov, ‘Nonstationary amplification of the holographic recording in doped BSO crystals: a base for photorefractive incoherent-to-coherent optical conversion’, Appl. Opt. 34 (20) (1995) 4083–4085.
  • [39] A.I. Grachev, A.A. Kamshilin, O.V. Kobozev, V.V. Prokofiev, Origin of transient effects in two-wave mixing experiments in BSO crystals, Optics of Crystals, in: V.V. Shepelevich, N.N. Egorov (Eds.), Proc. SPIE 4358 (2001) 102–108.
  • [40] D. Kip, Photorefractive waveguides in oxide crystals: fabrication, properties and applications, Appl. Phys. B Lasers Opt. 67 (2) (1998) 131–150.
  • [41] J.S. McCullough, A.L. Harmon Bauer, C.A. Hunt, J.J. Martin, Photochromic response of bismuth germanium oxide doped with chromium, J. Appl Phys. 90 (12) (2001) 6017–6021.
  • [42] W. Wardzynski, H. Szymczak, K. Pataj, T. Łukasiewicz, J. Zmija, Light induced charge transfer processes in Cr doped Bi12GeO20 and Bi12SiO20 single crystals, J. Phys. Chem. Solids 43 (8) (1982) 767–769.
  • [43] I. Stefaniuk, P. Potera, I. Rogalska, D. Wróbel, EPR investigations of defects in Bi12GeO20:Cr single crystal irradiated by high energy uranium ions, Curr. Top. Biophys. 33 (Suppl. A) (2010) 231–235.
  • [44] G. Aka, F. Mougel, F. Auge, A. Kahn-Harari, D. Vivien, J.M. Benitez, F. Salin, D. Pelenc, F. Balembois, P. Georges, A. Brun, Overview of the laser and non-linear optical properties of calcium-gadolinium-oxo-borate Ca4GdO(BO3)3, J. Alloys Compd. 303–304 (2000) 401–408.
  • [45] M. Iwai, T. Kobayashi, H. Furuya, Y. Mori, T. Sasaki, Crystal Growth and optical characterization of rare-earth (Re) calcium oxyborate ReCa 4O(BO 3) 3 (Re = Y or Gd) as new nonlinear, Opt. Mater. Jpn. J. Appl. Phys. 36 (Part 2) (1997) L276.
  • [46] M.G. Brik, A. Majchrowski, I.V. Kityk, T. Łukasiewicz, M. Piasecki, Spectroscopy of Ca4GdO(BO3)3 (GdCOB): Pr3+ single crystals, J. Alloys Compd. 465 (1–2) (2008) 24–34.
  • [47] G. Dominiak-Dzik, W. Ryba-Romanowski, S. Golab, A. Pajaczkowska, Visible and infrared spectroscopy of Pr3+ and Tm3+ ions in lead borate glasses, J. Phys. Condens Matter 12 (2000) 5495–5505.
  • [48] S. Geller, E.A. Wood, Wood Crystallographic studies of perovskite-like compounds. I. Rare earth orthoferrites and YFeO3, YCrO3, YAlO3, Acta Crystallogr. 9 (1956) 563–568.
  • [49] R. Diehl, G. Brant, Crystal structure refinement of YAlO3, a promising laser material, Mater. Res Bull. 10 (1975) 85–90.
  • [50] Z. Bojarski, M. Gigla, K. Stroz, M. Surowiec, Crystallography, PWN, Warsaw, 2001, in Polish.
  • [51] S.C. Abrahams, J.M. Reddy, J.L. Bernstein, Ferroelectric lithium niobate. 3, 4 and 5. Single crystal X-ray diffraction study at 24 ◦C, J. Phys. Chem. Solids 27 (1966) 997–1012, 1013-1018, 1019-1026.
  • [52] A.M. Glass, Optical Spectra of Cr3+ impurity ions in ferroelectric LiNbO3 and LiTaO3, J. Chem. Phys. 50 (1969) 1501–1510.
  • [53] S.C. Abrachams, P.B. Jamieson, I.L. Bernstein, Crystal chirality and optical rotation sense in isomorphous Bi12SiO20 and Bi12GeO20, J. Chem. Phys. 30 (5) (1979) 293–295.
  • [54] I.V. Stepanova, N.G. Gorashchenko, K.A. Subbotin, V.A. Smirnov, Determination of the charge state of chromium in Cr:Bi 12 GeO 20 single crystals by spectral luminescence methods, J. Opt. Spectrosc. 107 (2009) 335–338.
  • [55] G. Aka, A. Kahn-Harari, F. Mougel, D. Vivien, F. Salin, P. Coquelin, P. Colin, D. Pelenc, J.P. Damelet, Linear- and nonlinear-optical properties of a new gadolinium calcium oxoborate crystal, Ca4GdO(BO3)3, J. Pt. Soc. Am. B14 (9) (1997) 2238–2247.
  • [56] P. Segonds, B. Boulanger, B. Menaert, J. Zaccaro, J.P. Salvestrini, M.D. Fontana, R. Moncorge, F. Poree, G. Gadret, J. Mangin, A. Brenier, G. Boulon, G. Aka, D. Pelenc, Optical characterizations of YCa4O(BO3)3and Nd: YCa4O(BO3)3 crystals, Opt. Mater. 29 (8) (2007) 975–982.
  • [57] F. Mougel, A. Kahn-Harari, G. Aka, D. Pelenc, Structural and thermal stability of Czochralski grown GdCOB oxoborate single crystals, J. Mater. Chem. 8 (1998) 1619–1623.
  • [58] L. Shirong, H. Qingzhen, Z. Yifan, J. Aidong, C. Chuangtian, Structure of calcium fluoroborate, Ca5(BO3)3F, Acta Crystallogr. Sect. C 45 (1989) 1861–1863.
  • [59] A.B. Ilyukhin, B.F. Dzhurinskii, Crystal structure of binary oxoborates LnCa4O(BO3)3, J. Russ. Inorg. Chem. 38 (1993) 847–850.
  • [60] A. Pajaczkowska, A. Klos, B. Hilczer, N. Menguy, A. Novosselov, ‘Growth of GdCa4O(BO3)3 by the czochralski method and some structure properties’, Cryst. Growth Des. 1 (5) (2001) 363–365.
  • [61] D.G. McGavin, M.Y. Mombourquette, J.A. Weil, Computer Program EPR–NMR version 6.5, Department of Chemistry, University of Saskatchewan, Canada, 2002), 2018.
  • [62] I. Stefaniuk, C. Rudowicz, Computer program SPM-MC and its applications in EMR studies of transition ions in crystals, Curr. Top. Biophys. 33 (Suppl. A) (2010) 217–220.
  • [63] I. Stefaniuk, C. Rudowicz, Computer program superposition model-Monte Carlo (SPM-MC) and its applications in EMR studies of transition ions at low symmetry sites Fe3+ doped YAP crystals, Nukleonika 58 (3) (2013) 397–400.
  • [64] A. Abragam, B. Bleaney, Electron Paramagnetic Resonance of Transition Ions, Clarendon Press, Oxford, 1970.
  • [65] C. Rudowicz, Concept of spin Hamiltonian, forms of zero-field splitting and electronic Zeeman Hamiltonians and relations between parameters used in EPR. A critical review, Magn. Res Rev. 13 (1987) 1–89, Erratum, ibidem 13: 335.
  • [66] C. Rudowicz, S.K. Misra, Spin-hamiltonian formalisms in Electron Magnetic Resonance (EMR) and related spectroscopies, Appl. Spect. Rev. 36 (2001) 11–63.
  • [67] C. Rudowicz, Transformation relations for the conventional Okq and normalized O’kq Stevens operator equivalents with k = 1 to 6 and – k ≤ q ≤ +k, J. Phys. C 18 (1985) 1415–1430, Erratum: ibidem C 18: 3837.
  • [68] C. Rudowicz, C.Y. Chung, The generalization of the extended Stevens operators to higher ranks and spins, and a systematic review of the tables of the tensor operators and their matrix elements, J. Phys. Condens. Matter 16 (2004) 5825–5847.
  • [69] C. Rudowicz, On the relations between the zero-field splitting parameters in the extended Stevens operator notation and the conventional ones used in EMR for orthorhombic and lower symmetry, J. Phys. Condens. Matter 12 (2000) L417–L423.
  • [70] D.J. Newman, W. Urban, Interpretation of S-state ion E. P. R. spectra, Adv. Phys. 24 (1975) 793–844.
  • [71] D.J. Newman, B. Ng, The superposition model of crystal fields, Rep. Prog. Phys. 52 (1989) 699–763.
  • [72] C. Rudowicz, On the derivation of the superposition model formulas using the transformation relations for the Stevens operators, J. Phys. C: Solid State Phys. 20 (1987) 6033–6037.
  • [73] R.L. White, G.F. Herrmann, J.W. Carson, M. Mandel, Paramagnetic Resonance of Fe3+ and Gd3+ in Yttrium Orthoaluminate, Phys. Rev. 136 (1A) (1964) 231–239.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9939500b-93ab-44b7-8961-2437dd2b6bca
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.