PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Computational modelling of the fuel injection and combustion in a Diesel K6 rotary engine

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper outlines the methods and results of computations completed using the ANSYS Fluent code modelling the fuel injection and combustion within the K6 engine, a new form of rotary engine in which the fuel is injected in an arc across the top of the cylinder. The model uses the DPM Model in conjunction with a dynamic mesh and non-premixed combustion models to treat the injection as liquid diesel evaporating to C12H23. The outcomes of this model are presented in images displaying the distribution of temperature, and fuel and CO2 concentrations. The limitations pertaining to the maximum injection angles are also studied. The simulation is found to be effective and the results suggestive of successful, clean and complete combustion while presenting some matters, which require further investigation. The article presents temperature within the combustion chamber at various crank angle degrees, ) velocity of fluid within the combustion chamber, effects of impingement with injector offset on temperature and fuel concentration, fuel concentration demonstrating impingement, in cylinder temperature curve.
Twórcy
autor
  • The University of Birmingham Department of Mechanical Engineering Edgbaston, Birmingham B15 2TT, United Kingdom tel.: +44 7968 157 909
  • The University of Birmingham Department of Mechanical Engineering Edgbaston, Birmingham B15 2TT, United Kingdom tel.: +44 7968 157 909
autor
  • Railfast Intermodal Limited 326 Woodway Lane, Walsgrave Coventry, CV2 2LF, United Kingdom
autor
  • Railfast Intermodal Limited 326 Woodway Lane, Walsgrave Coventry, CV2 2LF, United Kingdom
Bibliografia
  • [1] Seguin, L., Lazare, A., US Patent 959172, United States of America 1910.
  • [2] Jordan, O. G., Rotary internal combustion engine, GB Patent application WO2017168128A1GB, 2016.
  • [3] Beck, N., Uyehara, J., Otto, A., Johnson, W. P., Effects of Fuel Injection on Diesel Combustion, SAE Technical Paper Series 880299, 1988.
  • [4] Hossainpour, S., Binesh, A. R., Investigation of fuel spray atomization in a DI heavy-duty diesel engine and comparison of various spray breakup models, Fuel, pp. 799-805, 2009.
  • [5] Li, K., Nishida, K., Ogata, Y., Shi, B., Effect of flat-wall impingement on diesel spray combustion, 5, Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, Vol. 229, pp. 535-549, 2014.
  • [6] Kiplimo, R., Tomita, E., Kawahara, N., Yokobe, S., Effects of spray impingement, injection parameters, and EGR on the combustion and emission characteristics of a PCCI diesel engine, Applied Thermal Engineering, Vol. 37, pp. 165-175, 2012.
  • [7] Pierpont, D. A., Reitz, R. D., Effects of Injection Pressure and Nozzle Geometry on D.I. Diesel Emissions and Performance, SAE Technical Paper 950604, 1995.
  • [8] ANSYS, Customer Training Material, L6, 2010.
  • [9] ANSYS, Fluent User’s Manual, 22.7.2, Droplet Breakup Models, 2006.
  • [10] Gupta, R. B., Demirbas, A., Gasoline, Diesel, and Ethanol Biofuels from Grasses and Plants, Cambridge, Cambridge University Press, p. 125, 2010.
  • [11] Prabhakara, R. G., Raju, V. R. K., Srinivasa, R. S., Effect of Fuel Injection Pressure and Spray Cone Angle in DI Diesel Engines using CONVERGE CFD Code, Procedia Engineering, Vol. 127, pp. 295-300, 2015.
  • [12] Lakshminarayanan, P. A., Aghav, Yoghesh, V., Ignition Delay in a Diesel Engine, Modelling Diesel Combustion, DOI 10.1007/978-90-481-3885-2, pp. 59-78, 2009.
  • [13] Du, Yuekang, Modelling of a K3 Rotary Engine, BEng Undergraduate Dissertation: University of Birmingham, 2017.
  • [14] Di Iorio, S., Mancaruso, E., Vaglieco, B. M., Characterization of Soot Particles Produced in a Transparent Research CR DI Diesel Engine Operating with Conventional and Advanced Combustion Strategies, Aerosol Science and Technology, Vol. 46, pp. 272-286, DOI: 10.1080/02786826.2011.620647, 2012.
  • [15] Wheelwrite, S. C., Clark, K. B., Revolutionizing Product Development, Simon and Schuster, ISBN 9781451676297, 1992.
  • [16] ANSYS, Fluent Handbook, pp. 14-1, 2001.
  • [17] Smith, W. J., Timoney, D. J., On the Relative Roles of Fuel Spray Kinetic Energy and Engine Speed in Determining Mixing Rates in D.I. Diesel Engines, Gas Turbines Power, pp. 212-217, 1997.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-993380eb-4fec-4bab-adda-2d9ce7bdfcc1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.