PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Simulation of a cylindrical glass dome negative impact on a 360° field of view 2D laser scanner performance and a method for correction

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Although laser scanning ideas and hardware solutions are well-known to experts in the field, there is still a large area for optimization. Especially, if long-range and high-resolution scanning is considered, the smallest defects in optical quality should be perfected. On the other hand, the simplicity, reliability, and finally the cost of the solution plays an important role, too. In this paper, a very simple but efficient method of optical correction is presented. It is dedicated to laser scanners operating from inside cylindrical glass domes. Such covers normally introduce aberrations into both the laser beam and receiving optics. If these effects are uncorrected, the laser scanner performance is degraded both in terms of angular resolution and maximum range of operation. It may not be critical for short-range scanning applications; however, if more challenging concepts are considered, this issue becomes crucial. The proposed method does not require sophisticated optical solutions based on aspheric or freeform components, which are frequently used for similar purposes in imaging-through-dome correction but is based on a simple cylindrical refractive correction plate.
Rocznik
Strony
art. no. e145566
Opis fizyczny
Bibliogr. 31 poz., rys.
Twórcy
  • Institute of Optoelectronics, Military University of Technology, ul. gen. Sylwestra Kaliskiego 2, 00-908 Warsaw, Poland
Bibliografia
  • [1] A.P. Spring, “A History of Laser Scanning Part 1: Space and Defense Applications,” Photogramm. Eng. Remote Sens., vol. 86, no. 7, pp. 419–429, 2020, doi: 10.14358/PERS.86.7.1.
  • [2] A.P. Spring„ “A History of Laser Scanning Part 2: The Later Phase of Industrial and Heritage Applications,” Photogramm. Eng. Remote Sens., vol. 86, no. 8, pp. 479–501, 2020, doi: 10.14358/PERS.86.8.479.
  • [3] Y. Zhao, X. Yu, Z. Xin, M. Fan, and H. Wu, “Application and outlook of terrestrial 3D laser scanning technology in forestry,” World For. Res., vol. 23, no. 4, pp. 41–45, 2010, doi: 10.3390/s22010265.
  • [4] M. Javaid, A. Haleem, R.P. Singh, and R. Suman, “ Industrial perspectives of 3D scanning: Features, roles and it’s analytical applications,” Sensors Int., vol. 21, p. 100114, 2021, doi: 10.1016/j.sintl.2021.100114.
  • [5] I.M. Oludare and B. Pradhan, “ A decade of modern cave surveying with terrestrial laser scanning: a review of sensors, method and application development,” Int. J. Speleol., vol. 45, no. 1, pp. 71–88, 2016, doi: 10.5038/1827-806X.45.1.1923.
  • [6] A. Szymczak-Graczyk, Z. Walczak, B. Ksit, and Z. Szyguła, “Multi-criteria diagnostics of historic buildings with the use of 3D laser scanning (a case study),” Bull. Pol. Acad. Sci. Tech. Sci., vol. 70, no. 2, p. e140373, 2022, doi: 10.24425/bpasts.2022.140373.
  • [7] Z. Mierczyk, Lasers in the dual use technologies„ Bull. Pol. Acad. Sci. Tech. Sci., vol. 60, no. 4, pp. 691–696, 2012, doi: 10.2478/v10175-012-0080-z.
  • [8] A. Kus, “Implementation of 3D optical scanning technology for automotive applications,” Sensors, vol. 9, no. 3, pp. 1967–1979, 2009, doi: 10.3390%2Fs90301967.
  • [9] J. Hoła, J. Bień, Ł. Sadowski, and K. Schabowicz, “Non-destructive and semi-destructive diagnostics of concrete structures in assessment of their durability,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 63, no. 1, pp. 87–96, 2015, doi: 10.1515/bpasts-2015-0010.
  • [10] T. Reyno, C. Marsden, and D. Wowk, “ Surface damage evaluation of honeycomb sandwich aircraft panels using 3D scanning technology,” NDT E Int., vol. 97, pp. 11–19, 2018, doi: 10.1016/j.ndteint.2018.03.007.
  • [11] G. Aslan, E.I. Konukseven, A. and B. Koku, “ Design and implementation of a 3D scanning platform for mobile robotic applications,” Int. J. Des. Eng., vol. 5, no. 4, pp. 358–373, 2015, doi: 10.1504/IJDE.2014.067078.
  • [12] M.M. Jadhav, Y. Durgude, and V.N. Umaje„ “Design and development for generation of real object virtual 3D model using laser scanning technology,” Int. J. Intell. Mechatron. Robot., vol. 1, no. 3, pp. 273–291, 2019, doi: 10.1504/IJIMR.2019.101770.
  • [13] Z. Liu, J. Zhu, L. Yang, H. Liu, J. Wu, and B. Xue, “ A single-station multi-tasking 3D coordinate measurement method for large-scale metrology based on rotary-laser scanning,” Meas. Sci. Technol., vol 24, p. 105004, 2013, doi: 10.1088/0957-0233/24/10/105004.
  • [14] L. Pinpin, Q. Wenge, C. Yunjian, and L. Feng, “ Application of 3D Laser Scanning in Underground Station Cavity Clusters,” Adv. Civ. Eng., vol. 2021, p. 8896363, 2021, doi: 10.1155/2021/8896363.
  • [15] H. Yuan, H. Zhang, B. Zha, and L. Ding, “ Trajectory correction and position error analysis of underwater laser scanning,” Opt. Laser Technol., vol. 153, p. 108136, 2022, doi: 10.1016/j.optlastec.2022.108136.
  • [16] M. Javaid, A. Haleem, S. Khan, and S. Luthra, “ Different flexibilities of 3D scanners and their impact on distinctive applications: An analysis,” Int. J. Business Anal., vol. 7, no. 1, pp. 37–53, 2020, doi: 10.4018/IJBAN.2020010103.
  • [17] M. Choi, M. Kim, G. Kim, S. Kim, S.C. Park, and S. Lee, “ 3D scanning technique for obtaining road surface and its applications,” Int. J. Precis. Eng. Manuf., vol. 18, pp. 367–373, 2017, doi: 10.1007/s12541-017-0044-1.
  • [18] B.V. Farahani, F. Barros, M.A. Popescu, P.J. Sousa, P.J. Tavares, and P. Moreira, “ Geometry acquisition and 3D modelling of a wind tower using a 3D laser scanning technology,” Procedia Struct. Integr., vol. 17, pp. 712–717, 2019, doi: 10.1016/j.prostr.2019.08.095.
  • [19] Y. Chen and D.T. Griffith„ “Experimental and numerical full-field displacement and strain characterization of wind turbine blade using a 3D Scanning Laser Doppler Vibrometer,” Opt. Laser Technol., vol. 158, p. 108869, 2023, doi: 10.1016/j.optlastec.2022.108869.
  • [20] K. Panjvani, A.V. Dinh and K.A. Wahid„ “LiDARPheno – A low-cost lidar-based 3D scanning system for leaf morphological trait extraction,” Front. Plant Sci., vol. 10, art. 147, 2019, doi: 10.3389/fpls.2019.00147.
  • [21] T. Zogheib et al.„ “Comparison of 3D Scanning Versus 2D Photography for the Identification of Facial Soft-Tissue Landmarks,” Open Dent. J., vol. 12, pp. 61–71, 2018, doi: 10.2174/1874210601812010061.
  • [22] J.F. Larue, D. Brown, and M. Viala, “How optical CMMs and 3D scanning will revolutionise the 3D metrology world,” in Integrated Imaging and Vision Techniques for Industrial Inspection, ed. Z. Liu, H. Ukida, P. Ramuhalli, K. Niel, Springer, 2015, pp. 141–176.
  • [23] D. Moon, S. Chung, S. Kwon, J. Seo, and J. Shin, “ Comparison and utilisation of point cloud generated from photogrammetry and laser scanning: 3D world model for smart heavy equipment planning,” Autom. Constr., vol. 98, pp. 322–331, 2019, doi: 10.1016/j.autcon.2018.07.020.
  • [24] B. Ergun, “A novel 3D geometric object filtering function for application in indoor area with terrestrial laser scanning data,” Opt. Laser Technol., vol. 42, no. 5, pp. 799–804, 2010, doi: 10.1016/j.optlastec.2009.12.006.
  • [25] B.V. Farahani et al., “A coupled 3D laser scanning and digital image correlation system for geometry acquisition and deformation monitoring of a railway tunnel,” Tunn. Undergr. Space Technol., vol. 91, p. 102995, 2019, doi: 10.1016/J.TUST.2019.102995.
  • [26] M.C. Amann, T.M. Bosch, M. Lescure, R.A. Myllylae, and M. Rioux, “Laser ranging: A critical review of usual techniques for distance measurement,” Opt. Eng., vol. 40, no. 1, pp. 10–19, 2001, doi: 10.1117/1.1330700.
  • [27] E. Hecht, Optics, fourth ed., San Francisco, Addison Wesley, 2002.
  • [28] J. Wojtanowski, M. Zygmunt, M. Traczyk, Z. Mierczyk, and M. Jakubaszek, “Beam forming optic aberrations’ impact on maximum range of semiconductor laser based rangefinders,” Opto-Electron. Rev., vol. 9, no. 3, pp. 152–161, 2014, doi: 10.2478/s11772-014-0191-1.
  • [29] R.M. Measures, Laser Remote Sensing Fundamentals and Applications, reprint ed., Malabar, Krieger Publishing Company, 1992.
  • [30] J. Wojtanowski„ “Cancelling lidar echo signal 1/range2 dependence and geometrical form factor shaping by the application of freeform optics,” Opt. Laser Technol., vol. 125, p. 106011, 2020, doi: 10.1016/j.optlastec.2019.106011.
  • [31] W. Smith, Modern Optical Engineering, fourth ed., New York, Mc Graw Hill, 2008.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-992fef4a-4290-4c2a-97c2-9af011ab72df
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.