PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Establishment of optimal physical assets inspection frequency based on risk principles

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Ustalanie optymalnej częstotliwości przeglądów obiektów technicznych w oparciu o zasady oceny ryzyka
Języki publikacji
EN
Abstrakty
EN
Risk Based Inspection (RBI) is a risk methodology used as the basis for prioritizing and managing the efforts for an inspection program allowing the allocation of resources to provide a higher level of coverage on physical assets with higher risk. The main goal of RBI is to increase equipment availability while improving or maintaining the accepted level of risk. This paper presents the concept of risk, risk analysis and RBI methodology and shows an approach to determine the optimal inspection frequency for physical assets based on the potential risk and mainly on the quantification of the probability of failure. It makes use of some assumptions in a structured decision making process. The proposed methodology allows an optimization of inspection intervals deciding when the first inspection must be performed as well as the subsequent intervals of inspection. A demonstrative example is also presented to illustrate the application of the proposed methodology.
PL
Risk Based Maintenance (RBI), to metody planowania inspekcji obiektów, w tym ustalania priorytetów i zarządzania czynnościami obsługowymi, wykorzystujące zasady oceny ryzyka. Pozwalają one na taką alokację zasobów, która zapewnia wyższy poziom zabezpieczenia obiektów technicznych obarczonych wyższym ryzykiem. Głównym celem RBI jest zwiększenie dostępności sprzętu przy jednoczesnym zwiększeniu lub utrzymaniu akceptowalnego poziomu ryzyka. W artykule omówiono pojęcie ryzyka i zasady analizy ryzyka oraz metodologię RBI, a także przedstawiono metodę pozwalającą na określenie optymalnej częstotliwości przeglądów obiektów technicznych na podstawie potencjalnego ryzyka, a przede wszystkim ilościowo określonego prawdopodobieństwa uszkodzenia. Podejście to wykorzystuje niektóre założenia stosowane w ustrukturyzowanym procesie podejmowania decyzji. Zaproponowana metodologia pozwala na optymalizację długości okresów między przeglądami,dając możliwość określenia czasu wykonania pierwszego oraz kolejnych przeglądów. Zastosowanie proponowanej metodologii zilustrowano przykładem numerycznym.
Rocznik
Strony
243--249
Opis fizyczny
Bibliogr. 29 poz., rys., tab.
Twórcy
autor
  • ISEL – Instituto Superior de Engenharia de Lisboa Mechanical Engineering Department Rua Conselheiro Emídio Navarro, 1 1959-007 Lisboa, Portugal Centre for Marine Technology and Engineering (CENTEC) Instituto Superior Técnico, Universidade de Lisboa Av. Rovisco Pais 1049-001 Lisboa, Portugal
autor
  • FEUP – Faculdade de Engenharia da Universidade do Porto Mechanical Engineering Department Rua Dr. Roberto Frias 4200-465 Porto, Portugal
Bibliografia
  • 1. Abrahamsen, E, Asche, F, Milazzo, M. An evaluation of the effects on safety of using safety standards in major hazard industries. Safety Science; 2013; 59: 173-178, http://dx.doi.org/10.1016/j.ssci.2013.05.011.
  • 2. API RP 580. Risk-Based Inspection – API Recommended Practice 580. Second Edition. American Petroleum Institute; 2009.
  • 3. API RP 581. Risk-Based Inspection – Base Resource Document. First Edition. American Petroleum Institute; 2000.
  • 4. Arunraj N, Maiti J. Risk-based maintenance – Techniques and applications. Journal of Hazardous Materials; 2007; 142: 653-661, http://dx.doi.org/10.1016/j.jhazmat.2006.06.069.
  • 5. Bareib J, Buck P, Matschecko B, Jovanovic A, Balos D, Perunicic M. RIMAP demonstration project. Risk-based life management of piping system in power plant Heilbronn. International Journal of Pressure Vessels and Piping; 2004; 81:807-813, http://dx.doi.org/10.1016/j.ijpvp.2004.07.004.
  • 6. Bertolini M, Bevilacqua M, Ciarapica F, Giacchetta G. Development of risk-based inspection and maintenance procedures for an oil refinery. Journal of Loss Prevention in the Process Industries; 2009; 22:244-253, http://dx.doi.org/10.1016/j.jlp.2009.01.003.
  • 7. Chang M, Chang R, Shu C, Lin K. Application of risk based inspection in refinery and processing piping. Journal of Loss Prevention in the Process Industries; 2005; 18:397-402, http://dx.doi.org/10.1016/j.jlp.2005.06.036.
  • 8. Chien C, Chen C, Chao Y. A strategy for the risk-based inspection of pressure safety valves. Reliability Engineering & System Safety; 2009; 94:810-818, http://dx.doi.org/10.1016/j.ress.2008.09.002.
  • 9. Embrey, D. Incorporating management and organisational factors into probabilistic safety assessment. Reliability Engineering & System Safety; 1992; 38:199-208, http://dx.doi.org/10.1016/0951-8320(92)90121-Z.
  • 10. Gelyani, A, Selvik, J, Abrahamsen, E. Decision criteria for updating test intervals for well barriers. Journal of Risk Research; 2014: 1-11, http://dx.doi.org/10.1080/13669877.2014.961521.
  • 11. Giribone R, Valette B. Principles of failure probability assessment (PoF). International Journal of Pressure Vessels and Piping; 2004; 81:797-806, http://dx.doi.org/10.1016/j.ijpvp.2004.07.010.
  • 12. Hulshof H, Noteboom J, Welberg P, Bruijn L. Improved plant availability by advanced condition based inspections. International Journal of Pressure Vessels and Piping; 2004; 81:491-497, http://dx.doi.org/10.1016/j.ijpvp.2003.12.022.
  • 13. Jovanovic A. Risk-based inspection and maintenance in power and process plants in Europe. Nuclear Engineering and Design; 2003; 226:165-182, http://dx.doi.org/10.1016/j.nucengdes.2003.06.001.
  • 14. Kallen M, Noortwijk J. Optimal maintenance decisions under imperfect inspection. Reliability Engineering & System Safety; 2005; 90:177- 185, http://dx.doi.org/10.1016/j.ress.2004.10.004.
  • 15. Khan F, Sadiq R, Haddara M. Risk-based inspection and maintenance (RBIM). Multi-attribute decision-making with aggregative risk analysis. Process Safety and Environmental Protection; 2004; 82:398-411, http://dx.doi.org/10.1205/psep.82.6.398.53209.
  • 16. Kim T, Kim J, Kim Y, Kim K. Current risk management status of the Korean petrochemical industry. Journal of Loss Prevention in the Process Industries; 2002; 15:311-318, http://dx.doi.org/10.1016/S0950-4230(02)00014-1.
  • 17. Lee C, Teo Y. Det Norske Veritas RBI study for the ammonia storage plant. ROC: Taiwan Fertilizer Kaohsiung Ammonia Terminal; 2001.
  • 18. Milazzo, M, Maschio, G, Uguccioni G. The influence of risk prevention measures on the frequency of failure of piping. International Journal of Performability Engineering; 2010; 6:19-33.
  • 19. Noori S, Price J. A risk approach to the management of boiler tube thinning. Nuclear Engineering and Design; 2006; 236:405-414, http://dx.doi.org/10.1016/j.nucengdes.2005.09.019.
  • 20. OREDA. Offshore Reliability Data – 4th Edition, Prepared by SINTEF Industrial Management, Published by the OREDA Participants; 2002.
  • 21. Papazoglou, I, Aneziris, O. On the quantification of the effects of organisational and management factors in chemical installations; Reliability Engineering & System Safety; 1999; 63:33-45, http://dx.doi.org/10.1016/S0951-8320(98)00013-1.
  • 22. Santosh, Vinod G, Shrivastava O, Saraf R, Ghosh A, Kushwaha H. Reliability analysis of pipelines carrying H2S for risk based inspection of heavy water plants. Reliability Engineering & System Safety; 2006; 91:163-170, http://dx.doi.org/10.1016/j.ress.2004.11.021.
  • 23. Schroder H, Kauer R. Regulatory requirements related to risk-based inspection and maintenance. International Journal of Pressure Vessels and Piping; 2004; 81:847-854, http://dx.doi.org/10.1016/j.ijpvp.2004.07.002.
  • 24. Sheils E, O'Connor A, Breysse D, Schoefs F; Yotte S. Development of a two-stage inspection process for the assessment of deteriorating infrastructure. Reliability Engineering & System Safety; 2010; 95:182-194, http://dx.doi.org/10.1016/j.ress.2009.09.008.
  • 25. Simola K, Pulkkinen U, Talja H, Roikonen P, Saarenheimo A. Comparison of approaches for estimating pipe rupture frequencies for riskinformed in-service inspections. Reliability Engineering & System Safety; 2004; 84:65-74, http://dx.doi.org/10.1016/j.ress.2003.10.008
  • 26. Singh M, Markeset T. A methodology for risk-based inspection planning of oil and gas pipes based on fuzzy logic framework. Engineering Failure Analysis; 2009; 16:2098-2113, http://dx.doi.org/10.1016/j.engfailanal.2009.02.003.
  • 27. Tien S, Hwang W, Tsai C. Study of a risk-based piping inspection guideline system. ISA Transactions; 2007; 46:119-126, http://dx.doi.org/10.1016/j.isatra.2006.06.006.
  • 28. Vianello, C, Maschio, G, Mura, A, Babolin, D, Gambato, F, Attori, C. Development of a RBI tool for inspection management in chemical plants. Chemical Engineering Tansactions; 2013; 31:235-240.
  • 29. You J, Kuo H, Wu W. Case studies of risk-informed in service inspection. Nuclear Engineering and Design; 2006; 236:35-46, http://dx.doi.org/10.1016/j.nucengdes.2005.06.014.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-992f24f3-75db-4faa-b97c-ea5d81e3f634
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.