PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A Numerical Study of the Relation Between the Acoustic Generator Geometry and the Heat Transfer Conditions

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Modern gas turbine systems operate in temperatures ranging from 1200°C to even 1500°C, which creates bigger problems related to the blade material thermal strength. In order to ensure appropriate protection of the turbine blades, a sophisticated cooling system is used. Current emphasis is placed on the application of non-stationary flow effects to improve cooling conditions, e.g., the unsteady-jet heat transfer or the heat transfer enhancement using high-amplitude oscillatory motion. The presented research follows a similar direction. A new concept is proposed of intensification of the heat transfer in the cooling channels with the use of an acoustic wave generator. The acoustic wave is generated by an appropriately shaped fixed cavity or group of cavities. The phenomenon is related to the coupling mechanism between the vortex shedding generated at the leading edge and the acoustic waves generated within the cavity area. Strong instabilities can be observed within a certain range of the free flow velocities. The presented study includes determination of the relationship between the amplitude of acoustic oscillations and the cooling conditions within the cavity. Different geometries of the acoustic generator are investigated. Calculations are also performed for variable flow conditions. The research presented in this paper is based on a numerical model prepared using the Ansys CFX-17.0 commercial CFD code.
Rocznik
Strony
5--26
Opis fizyczny
Bibliogr. 22 poz., rys., tab.
Twórcy
autor
  • Institute of Power Engineering and Turbomachinery, Silesian University of Technology, 44-100 Gliwice, Konarskiego 18 Str.
  • Institute of Power Engineering and Turbomachinery, Silesian University of Technology, 44-100 Gliwice, Konarskiego 18 Str.
autor
  • Institute of Power Engineering and Turbomachinery, Silesian University of Technology, 44-100 Gliwice, Konarskiego 18 Str.
Bibliografia
  • [1] E.Y. Choi, Y.D. Choi, W.S. Lee, J.T. Chung, and J.S. Kwak. Heat transfer augmentation using a rib-dimple compound cooling technique. Applied Thermal Engineering, 51(12):435441, 2013. doi: 10.1016/j.applthermaleng.2012.09.041.
  • [2] Z. Shen, Y. Xie, and D. Zhang. Experimental and numerical study on heat transfer in trailing edge cooling passages with dimples/protrusions under the effect of side wall slot ejection. International Journal of heat and Mass Transfer, 92:12181235, 2016. doi: 10.1016/j.ijheatmasstransfer.2015.09.042.
  • [3] Y. Rao, B. Li, and Y. Feng. Heat transfer of turbulent flow over surfaces with spherical dimples and teardrop dimples. Experimental Thermal and Fluid Science, 61:201209, 2015. doi: 10.1016/j.expthermflusci.2014.10.030.
  • [4] C. Wang, L. Wang, and B. Sunden. Heat transfer and pressure drop in a smooth and ribbed turn region of a two-pass channel. Applied Thermal Engineering, 85:225233, 2015. doi: 10.1016/j.applthermaleng.2015.03.079.
  • [5] J. Zhou, Y. Wang, G. Middelberg, and H. Herwig. Unsteady jet impingement: Heat transfer on smooth and non-smooth surfaces. International Communications in Heat and Mass Transfer, 36(2):103110, 2009. doi: 10.1016/j.icheatmasstransfer.2008.10.020.
  • [6] G. Middelberg and H. Herwig. Heat transfer under unsteadily impinging jets: a systematic investigation. In Proc. 13th International Heat Transfer Conference, Sydney, Australia, 2006.
  • [7] S. Göppert, T. Gürtler, H. Mocikat, and H. Herwig. Heat transfer under a precessing jet: effects of unsteady jet impingement. International Journal of Heat and Mass Transfer, 47(1213):27952806, 2004. doi: 10.1016/j.ijheatmasstransfer.2003.11.026.
  • [8] L. Larcheveque, P. Comte, and P. Sagaut. Large-eddy simulation of flows past cavities. AFM research group seminar, Southampton, February 25, 2004.
  • [9] L. Larcheveque, P. Sagaut, I. Mary, and O. Labbe. Large-eddy simulation of a compressible flow past a deep cavity. Physics of Fluids, 15(1):193210, 2002. doi: 10.1063/1.1522379.
  • [10] S. Rulik, W. Wróblewski, G. Nowak, and J. Szwedowicz. Heat transfer intensification using acoustic waves in a cavity. Energy, 87:2130, 2015. doi: 10.1016/j.energy.2015.04.088.
  • [11] S. Rulik and W. Wróblewski. A numerical study of the heat transfer intensification using high amplitude acoustic waves. (in print).
  • [12] W. Wróblewski and K. Bochon. Conjugate heat transfer analysis of the tip seal in the counter rotating low pressure turbine. Archives of Mechanics, 67(3):253270, 2015.
  • [13] D. Spura, J. Lueckert, S. Schoene, and U. Gampe. Concept development for the experimental investigation of forced convection heat transfer in circumferential cavities with variable geometry. International Journal of Thermal Sciences, 96:277289, 2015. doi: 10.1016/j.ijthermalsci.2014.08.018.
  • [14] E.J. Rossiter. Wind tunnel experiments on the flow over rectangular cavities at subsonic and transonic speeds. Royal Aircraft Establishment, RAE Farnborough, Technical Report No. 64037, 1964.
  • [15] Ö.H. Ünalmis, N.T. Clemens, and D.S. Dolling. Cavity oscillation mechanisms in high-speed flows. AIAA Journal, 42(10):20352041, 2004. doi: 10.2514/1.1000.
  • [16] A.T. de Jong and H. Bijl. Investigation of higher spanwise Helmholtz resonance modes in slender covered cavities. The Journal of the Acoustical Society of America, 128(4):16681678, 2010. doi: 10.1121/1.3473698.
  • [17] F.R. Menter. Zonal two-equation k - turbulence model for aerodynamic flows. AIAA Paper 93-2906, 1993.
  • [18] F.R. Menter. Two-equation eddy-viscosity turbulence models for engineering applications. AIAA-Journal, 32(8):15981605, 1994. doi: 10.2514/3.12149.
  • [19] S. Dykas, W. Wróblewski, S. Rulik, and T. Chmielniak. Numerical modeling of the acoustic waves propagation Archives of Acoustics, 35(1):3548, 2010.
  • [20] B. Henderson.Automobile noise involving feedback-sound generation by low speed cavity flows. Third Computational Aeroacoustics (CAA) Workshop on Benchmark Problems. NASA/CP-2000-209790, 95100, 2000.
  • [21] Third Computational Aeroacoustics (CAA) Workshop on Benchmark Problems, NASA/CP2000-209790.
  • [22] Fourth Computational Aeroacoustics (CAA) Workshop on Benchmark Problems, NASA/CP2004-212954.
Uwagi
EN
1. This work was performed using the PL-Grid infrastructure. The presented research was conducted within the 2015/17/B/ST8/02795 research project “Heat transfer intensification using an acoustic wave generator”, financed by the National Science Centre, Poland.
PL
2. Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-992e8a44-8d5e-459e-9290-bcc40e61da2c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.