Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Limited attention has been given to the persistent impacts of diverse herbicides present in soil on the growth of successive crops in agricultural production. Therefore, the objective of this experiment is to thoroughly examine atrazine residues toxic reactions in lucern (Medicago sativa L.). This experiment aims to thoroughly investigate the toxic response of atrazine in lucern. Lucern sourced from Henan Seed Company in China. The study employed the soil addition method to investigate the impacts and correlations of diverse concentrations of atrazine herbicide residues with growth indicators, photosynthetic features, chlorophyll fluorescence parameters of lucern. The results showed that with the increase of atrazine residue (0.0-2.0 mg·kg-1), the plant height (PH), root length (RL), stem dry weight (SDW) and root dry weight (RDW) decreased to 81.8%, 81.7%, 92.3% and 85.2%, respectively. SPAD value, net photosynthetic rate (Pn), stomatal conductance (GS), transpiration rate (Tr), the PSII maximum quantum yield (Fv/Fo), maximum photochemical efficiency (Fv/Fm), actual photosynthetic efficiency (Y(Ⅱ)), PSII coefficient of photochemical fluorescence quenching (qP) and photosynthetic electron transport rate (ETR) decrease by 62.1%, 83.4%, 84.1%, 95.7%, 76.8%, 11.8%, 84.5%, 46.1% and 63.1%, respectively. However, the intercellular carbon dioxide concentration (Ci) and non-photochemical quenching coefficient (NPQ) increased by 46.2% and 37.5%, respectively. Ci was positively correlated with Fv/Fo, Fv/Fm, qP, Y(II) and ETR (P<0.01), SPAD, Pn and Gs were significantly negatively correlated with Tr (P<0.01), were significantly positively correlated with Tr, Fv/ Fo, Fv/Fm, qP, Y(II) and ETR (P<0.01). The potential toxicity risk of atrazine residues to plants was assessed by photosynthetic characteristics and chlorophyll fluorescence parameters. Although herbicide application is essential for food production, appropriate concentration management methods must be adopted to ensure the sustainable development of agricultural ecology.
Wydawca
Rocznik
Tom
Strony
344--351
Opis fizyczny
Bibliogr. 34 poz., rys., tab.
Twórcy
autor
- Department of Plant Protection, College of Agrarian Technology and Natural Resources, Sumy National Agrarian University, Sumy 40021, Ukraine
autor
- Department of Plant Protection, College of Agrarian Technology and Natural Resources, Sumy National Agrarian University, Sumy 40021, Ukraine
- D.K. Zabolotny Institute of Microbiology and Virology of the National Academy of Sciences of Ukraine, 03143, Ukraine
Bibliografia
- 1. Ambavaram, M.M.R., Basu, S., Krishnan, A., Ramegowda, V., Batlang, U., Rahman, L., Baisakh, N., Pereira, A. 2014. Coordinated regulation of photosynthesis in rice increases yield and tolerance to environmental stress. Nat. Commun., 5(1), 5302. https://doi.org/10.1038/ncomms6302
- 2. Borawska-Jarmułowicz, B., Mastalerczuk, G., Pietkiewicz, S., Kalaji, M.H. 2014. Low temperature and hardening effects on photosynthetic apparatus efficiency and survival of forage grass varieties. Plant, Soil and Environment, 60(4), 17–183. https://doi.org/10.17221/57/2014-PSE
- 3. de Sousa, C.P., de Farias, M.E., Schock, A.A., Bacarin, M.A. 2014. Photosynthesis of soybean under the action of a photosystem ii-inhibiting herbicide. Acta Physiol. Plant., 36(11), 3051–3062. https://doi.org/10.1007/s11738-014-1675-9
- 4. Jun Zhang, J., Chen Lu, Y., Jin Zhang, J., Rong Tan, L., Yang, H. 2014. Accumulation and toxicological response of atrazine in rice crops. Ecotox. Environ. Safe., 102, 105–112. https://doi.org/10.1016/j.ecoenv.2013.12.034
- 5. Pimentel, C. 2014. Photoinhibition in a c4 plant, Zea mays L.: A minireview. Theor. Exp. Plant Physiol., 26(2), 157–165. https://doi.org/10.1007/s40626-014-0015-1
- 6. Zhang, J.J., Lu, Y.C., Yang, H. 2014. Chemical modification and degradation of atrazine in medicago sativa through multiple pathways. J. Agric. Food Chem., 62(40), 9657–9668. https://doi.org/10.1021/jf503221c
- 7. Bai, X., Sun, C., Xie, J., Song, H., Zhu, Q., Su, Y., Qian, H., Fu, Z. 2015. Effects of atrazine on photosynthesis and defense response and the underlying mechanisms in phaeodactylum tricornutum. Environmental Science and Pollution Research International, 22(22), 17499–17507. https://doi.org/10.1007/s11356-015-4923-7
- 8. Liu, H., Zhang, S., Zhang, X., Chen, C. 2015. Growth inhibition and effect on photosystem by three imidazolium chloride ionic liquids in rice seedlings. J. Hazard. Mater., 286, 440–448. https://doi.org/ https://doi.org/10.1016/j.jhazmat.2015.01.008
- 9. Rong Tan, L., Chen Lu, Y., Jing Zhang, J., Luo, F., Yang, H. 2015. A collection of cytochrome p450 monooxygenase genes involved in modification and detoxification of herbicide atrazine in rice (Oryza sativa) plants. Ecotox. Environ. Safe., 119, 25–34. https://doi.org/10.1016/j.ecoenv.2015.04.035
- 10. Wang, Q., Que, X., Zheng, R., Pang, Z., Li, C., Xiao, B. 2015. Phytotoxicity assessment of atrazine on growth and physiology of three emergent plants. Environmental Science and Pollution Research International 22(13), 9646–9657. https://doi.org/10.1007/s11356-015-4104-8
- 11. Zhang, J., Wang, L., Li, M., Jiao, L., Zhou, Q., Huang, X. 2015. Effects of bisphenol a on chlorophyll fluorescence in five plants. Environ. Sci. Pollut. Res., 22(22), 17724–17732. https://doi.org/10.1007/s11356-015-5003-8
- 12. Baxter, L., Brain, R.A., Lissemore, L., Solomon, K.R., Hanson, M.L., Prosser, R.S. 2016. Influence of light, nutrients, and temperature on the toxicity of atrazine to the algal species raphidocelis subcapitata: implications for the risk assessment of herbicides. Ecotox. Environ. Safe., 132, 250–259. https://doi.org/10.1016/j.ecoenv.2016.06.022
- 13. Chen, Z., Zou, Y., Wang, J., Li, M., Wen, Y. 2016. Phytotoxicity of chiral herbicide bromacil: enantioselectivity of photosynthesis in arabidopsis thaliana. Sci. Total Environ., 548–549, 139–147. https://doi.org/10.1016/j.scitotenv.2016.01.046
- 14. Defarge, N., Takács, E., Lozano, V.L., Mesnage, R., Spiroux De Vendômois, J., Séralini, G., Székács, A. 2016. Co-formulants in glyphosate-based herbicides disrupt aromatase activity in human cells below toxic levels. International Journal of Environmental Research and Public Health, 13(3), 261–264. https://doi.org/10.3390/ijerph13030264
- 15. Kniss, A.R. 2017. Long-term trends in the intensity and relative toxicity of herbicide use. Nat. Commun., 8(1), 14865–14867. https://doi.org/10.1038/ncomms14865
- 16. Krenchinski, F.H., Albrecht, L.P., Albrecht, A.J.P., Cesco, V.J.S., Rodrigues, D.M., Portz, R.L., Zobiole, L.H.S. 2017. Glyphosate affects chlorophyll, photosynthesis and water use of four intacta rr2 soybean cultivars. Acta Physiol. Plant., 39(2), 1–13. https://doi.org/10.1007/s11738-017-2358-0
- 17. Park, J., Brown, M.T., Depuydt, S., Kim, J.K., Won, D., Han, T. 2017. Comparing the acute sensitivity of growth and photosynthetic endpoints in three lemna species exposed to four herbicides. Environ. Pollut., 220, 818–827. https://doi.org/10.1016/j.envpol.2016.10.064
- 18. Sánchez, V., López-Bellido, F.J., Cañizares, P., Rodríguez, L. 2017. Assessing the phytoremediation potential of crop and grass plants for atrazinespiked soils. Chemosphere, 185, 119–126. https://doi.org/10.1016/j.chemosphere.2017.07.013
- 19. Smedbol, É., Lucotte, M., Labrecque, M., Lepage, L., Juneau, P. 2017. Phytoplankton growth and psii efficiency sensitivity to a glyphosate-based herbicide (factor 540®). Aquat. Toxicol., 192, 265–273. https://doi.org/https://doi.org/10.1016/j.aquatox.2017.09.021
- 20. Su, W.C., Sun, L.L., Wu, R.H., Ma, Y.H., Wang, H.L., Xu, H.L., Yan, Z.L., Lu, C.T. 2017. Effect of imazapic residues on photosynthetic traits and chlorophyll fluorescence of maize seedlings. Photosynthetica, 55(2), 294–300. https://doi.org/10.1007/s11099-016-0641-3
- 21. Weber, J.F., Kunz, C., Peteinatos, G.G., Santel, H., Gerhards, R. 2017. Utilization of chlorophyll fluorescence imaging technology to detect plant injury by herbicides in sugar beet and soybean. Weed Technol., 31(4), 523– 535. https://doi.org/10.1017/wet.2017.22
- 22. Su, W.C., Sun, L.L., Ge, Y.H., Wu, R.H., Xu, H.L., Lu, C.T. 2018. The residual effects of bensulfuronmethyl on growth and photosynthesis of soybean and peanut. Photosynthetica, 56(2), 670–677. https://doi.org/10.1007/s11099-017-0726-z
- 23. Wang, J., Zhong, X.M., Lv, X.L., Shi, Z.S., Li, F.H. 2018. Photosynthesis and physiology responses of paired near-isogenic lines in waxy maize (Zea mays L.) To nicosulfuron. Photosynthetica, 56(4), 1059– 1068. https://doi.org/10.1007/s11099-018-0816-6
- 24. Chen, Y., Jiang, Z., Wu, D., Wang, H., Li, J., Bi, M., Zhang, Y. 2019. Development of a novel bio-organic fertilizer for the removal of atrazine in soil. J. Environ. Manage., 233, 553–560. https://doi.org/https://doi.org/10.1016/j.jenvman.2018.12.086
- 25. He, H., Liu, Y., You, S., Liu, J., Xiao, H., Tu, Z. 2019. A review on recent treatment technology for herbicide atrazine in contaminated environment. International Journal of Environmental Research and Public Health, 16(24), 5129. https://doi.org/10.3390/ijerph16245129
- 26. Sun, L., Xu, H., Hao, H., An, S., Lu, C., Wu, R., Su, W. 2019. Effects of bensulfuron-methyl residue on photosynthesis and chlorophyll fluorescence in leaves of cucumber seedlings. PLoS One, 14(4), e215486. https://doi.org/10.1371/journal.pone.0215486
- 27. Todorova, D., Aleksandrov, V., Anev, S., Sergiev, I. 2022. Photosynthesis alterations in wheat plants induced by herbicide, soil drought or flooding. Agronomy, 12(2), 390. https://doi.org/10.3390/agronomy12020390
- 28. Sobiech, Ł., Grzanka, M., Kurasiak-Popowska, D., Radzikowska, D. 2020. Phytotoxic effect of herbicides on various camelina [Camelina sativa (L.) Crantz] genotypes and plant chlorophyll fluorescence. Agriculture, 10(5), 185. https://doi.org/10.3390/agriculture10050185
- 29. Rostami, S., Jafari, S., Moeini, Z., Jaskulak, M., Keshtgar, L., Badeenezhad, A., Azhdarpoor, A., Rostami, M., Zorena, K., Dehghani, M. 2021. Current methods and technologies for degradation of atrazine in contaminated soil and water: a review. Environ. Technol. Innov., 24, 102019. https://doi.org/https://doi.org/10.1016/j.eti.2021.102019
- 30. Sher, A., Mudassir Maqbool, M., Iqbal, J., Nadeem, M., Faiz, S., Noor, H., Hamid, Y., Yuan, X., Pingyi, G. 2021. The growth, physiological and biochemical response of foxtail millet to atrazine herbicide. Saudi J. Biol. Sci., 28(11), 6471–6479. https://doi.org/https://doi.org/10.1016/j.sjbs.2021.07.002
- 31. Stradtman, S.C., Freeman, J.L. 2021. Mechanisms of neurotoxicity associated with exposure to the herbicide atrazine. Toxics (Basel), 9(9), 207. https://doi.org/10.3390/toxics9090207
- 32. Zhang, Y., Yang, C., Zheng, Z., Cao, B., You, F., Liu, Y., Jiang, Z. 2021. Mechanism for various phytotoxicity of atrazine in soils to soybean: insights from soil sorption abilities and dissolved organic matter properties. J. Environ. Manage., 297, 113220. https://doi.org/10.1016/j.jenvman.2021.113220
- 33. Bhatt, P., Sethi, K., Gangola, S., Bhandari, G., Verma, A., Adnan, M., Singh, Y., Chaube, S. 2022. Modeling and simulation of atrazine biodegradation in bacteria and its effect in other living systems. J. Biomol. Struct. Dyn., 40(7), 3285–3295. https://doi.org/10.1080/07391102.2020.1846623
- 34. Todorova, D., Aleksandrov, V., Anev, S., Sergiev, I. 2022. Photosynthesis alterations in wheat plants induced by herbicide, soil drought or flooding. Agronomy, 12(2), 390. https://doi.org/10.3390/agronomy12020390
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-992dae00-d59b-4afa-ba07-3bfe66032334
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.