PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Bioleaching of sulfide containing material from the Wiśniówka Quarry: stability and adhesion of secondary products

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Secondary products (minerals) formed during bioleaching play an essential role in this process. Their adhesion to the surface of leached grains can inhibit bioleaching. For this reason, it is crucial to know the physicochemical conditions of adhesion. Selected material from the Wiśniówka Quarry (Kielce, Poland) with increased content of sulfides was subjected to microbial leaching. A precipitate collected from a bacterial culture was used as a secondary product (mainly jarosite). Adhesion and bio-extraction tests were carried out in a column reactor with a mineral bed (particle size 0.8 - 1.2 mm). The cationic surfactant (CTAB), anionic surfactant (SDS), and rhamnolipids (RL) were used to modify the surface of minerals and secondary products. Changes in the surface properties were determined with zeta potential measurements. The cationic surfactant above the 0.5 mM caused stability of jarosite suspension. Also, bioleaching efficiency was the highest for mineral surfaces modified by CTAB. The quantitative interpretation of the adhesion of the secondary product to bioleach mineral material was carried out.
Rocznik
Strony
art. no. 149884
Opis fizyczny
Bibliogr. 35 poz., rys., wykr.
Twórcy
  • Department of Process Engineering and Technology of Polymer and Carbon Materials, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
  • Department of Process Engineering and Technology of Polymer and Carbon Materials, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
  • Department of Analytical Chemistry and Chemical Metallurgy, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
Bibliografia
  • AKCIL, A., KOLDAS, S., 2006. Acid Mine Drainage (AMD): causes, treatment and case studies. Journal of Cleaner Production. 12-13, 1139-1145.
  • CAETANO, M.L., CIMINELLI, V.S.T., ROCHA, S.D.F., SPITALE, M.C., CALDEIRA, C.L., 2009. Batch and continuous precipitation of scorodite from dilute industrial solutions. Hydrometallurgy 95, 1-2, 44-52.
  • CHRISTOFI, N., IVSHINA, I.B., 2002. Microbial surfactants and their use in field studies of soil remediation. Journal of Applied Microbiology 93, 6, 915-929.
  • DAOUD, J., KARAMANEV, D., 2006. Formation of jarosite during Fe2+ oxidation by Acidithiobacillus ferrooxidans. Minerals Engineering 19, 9, 960-967.
  • DELIYANNI, E.A., BAKOYANNAKIS, D.N., ZOUBOULIS, A.I., MATIS, K.A., NALBANDIAN, L., 2001. Akaganéite-type β-FeO(OH) nanocrystals: Preparation and characterization. Microporous and Mesoporous Materials 42, 1, 49-57.
  • DIAO, M., TARAN, E., MAHLER, S., NGUYEN, A. V., 2014. A concise review of nanoscopic aspects of bioleaching bacteria-mineral interactions. Advances in Colloid and Interface Science 212, 45-63.
  • DOLD, B., 2017. Acid rock drainage prediction: A critical review. Journal of Geochemical Exploration 172, 120-132.
  • DRAHOTA, P., FILIPPI, M., 2009. Secondary arsenic minerals in the environment: A review. Environment International 35, 8, 1243-1255.
  • EGAL, M., CASIOT, C., MORIN, G., PARMENTIER, M., BRUNEEL, O., LEBRUN, S., ELBAZ-POULICHET, F., 2009. Kinetic control on the formation of tooeleite, schwertmannite and jarosite by Acidithiobacillus ferrooxidans strains in an As(III)-rich acid mine water. Chemical Geology 265, 3-4, 432-441.
  • GOGOI, D., BHAGOWATI, P., GOGOI, P., BORDOLOI, N.K., RAFAY, A., DOLUI, S.K., MUKHERJEE, A.K., 2016. Structural and physico-chemical characterization of a dirhamnolipid biosurfactant purified from: Pseudomonas aeruginosa: Application of crude biosurfactant in enhanced oil recovery. RSC Advances 6, 70669-70681.
  • HAMMARSTROM, J.M., SEAL, R.R., MEIER, A.L., KORNFELD, J.M., 2005. Secondary sulfate minerals associated with acid drainage in the eastern US: Recycling of metals and acidity in surficial environments. Chemical Geology 215, 407–431.
  • HOUNGALOUNE, S., KAWAAI, T., HIROYOSHI, N., ITO, M., 2014. Study on schwertmannite production from copper heap leach solutions and its efficiency in arsenic removal from acidic sulfate solutions. Hydrometallurgy 147–148, 30-40.
  • IRFAN, M., USMAN, M., MANSHA, A., RASOOL, N., IBRAHIM, M., RANA, U.A., SIDDIQ, M., ZIA-UL-HAQ, M., JAAFAR, H.Z.E., KHAN, S.U.D., 2014. Thermodynamic and Spectroscopic Investigation of Interactions between Reactive Red 223 and Reactive Orange 122 Anionic Dyes and Cetyltrimethyl Ammonium Bromide (CTAB) Cationic Surfactant in Aqueous Solution. Scientific World Journal 2014, 1-8.
  • ISHIGAMI, Y., GAMA, Y., ISHII, F., CHOI, Y.K., 1993. Colloid Chemical Effect of Polar Head Moieties of a Rhamnolipid-Type Biosurfactant. Langmuir 9, 1634-1636.
  • JOHNSON, D.B., HALLBERG, K.B., 2005. Acid mine drainage remediation options: A review. Science of the Total Environment 338, 1-2, 3-14.
  • JONSSON, B., LINDMAN, B., HOLMBERG, K., 1998. Surfactants and polymers in aqueous solutions. IEEE Electrical Insulation Magazine 14. https://doi.org/10.1109/MEI.1998.714652
  • JÖNSSON, J., PERSSON, P., SJÖBERG, S., LÖVGREN, L., 2005. Schwertmannite precipitated from acid mine drainage: Phase transformation, sulphate release and surface properties. Applied Geochemistry 20, 1, 179-191.
  • JÖNSSON, JÖRGEN, JÖNSSON, JULIA, LÖVGREN, L., 2006. Precipitation of secondary Fe(III) minerals from acid mine drainage. Applied Geochemistry 21, 3, 437-445.
  • KAKSONEN, A.H., MORRIS, C., REA, S., LI, J., USHER, K.M., MCDONALD, R.G., HILARIO, F., HOSKEN, T., JACKSON, M., DU PLESSIS, C.A., 2014. Biohydrometallurgical iron oxidation and precipitation: Part II - Jarosite precipitate characterisation and acid recovery by conversion to hematite. Hydrometallurgy 147–148, 264-272.
  • KHADEMI, M., WANG, W., REITINGER, W., BARZ, D.P.J., 2017. Zeta Potential of Poly(methyl methacrylate) (PMMA) in Contact with Aqueous Electrolyte-Surfactant Solutions. Langmuir 33, 40, 10473-10482.
  • LEBRÓN-PALER, A., PEMBERTON, J.E., BECKER, B.A., OTTO, W.H., LARIVE, C.K., MAIER, R.M., 2006. Determination of the acid dissociation constant of the biosurfactant monorhamnolipid in aqueous solution by potentiometric and spectroscopic methods. Analytical Chemistry 78, 22, 7649-7658.
  • LEE, J.S., CHON, H.T., 2006. Hydrogeochemical characteristics of acid mine drainage in the vicinity of an abandoned mine, Daduk Creek, Korea. Journal of Geochemical Exploration 88, 1, 37-40.
  • LI, P., ISHIGURO, M., 2016. Adsorption of anionic surfactant (sodium dodecyl sulfate) on silica. Soil Science and Plant Nutrition 62, 3, 223-229.
  • LI, W., ZHANG, M., ZHANG, J., HAN, Y., 2006. Self-assembly of cetyl trimethylammonium bromide in ethanol-water mixtures. Frontiers of Chemistry in China 1, 438-442.
  • PAIKARAY, S., 2015. Arsen-Geochemie von Acid Mine Drainage. Mine Water and the Environment 34, 181-196.
  • PAWLOWSKA, A., SADOWSKI, Z., 2020. Effect of schwertmannite surface modification by surfactants on adhesion of acidophilic bacteria. Microorganisms 8, 11, 1725-1737.
  • PICAZO-RODRÍGUEZ, N.G., CARRILLO-PEDROZA, F.R., SORIA-AGUILAR, M. DE J., BALTIERRA, G., GONZÁLEZ, G., MARTINEZ-LUEVANOS, A., GUZMÁN, I.A., 2022. Use of Thermally Modified Jarosite for the Removal of Hexavalent Chromium by Adsorption. Crystals (Basel) 12, 1, 80-91.
  • SADOWSKI, Z., POLOWCZYK, I., FARBISZEWSKA, T., FARBISZEWSKA-KICZMA, J., 2001. Adhesion of jarosite particles to the mineral surface, in: Prace Naukowe Instytutu Gornictwa Politechniki Wroclawskiej.
  • SASAKI, K., NAKAMUTA, Y., HIRAJIMA, T., TUOVINEN, O.H., 2009. Raman characterization of secondary minerals formed during chalcopyrite leaching with Acidithiobacillus ferrooxidans. Hydrometallurgy 95, 1-2, 153-158.
  • SHEN, Z.Y., LEE, M.T., 2017. On the morphology of the SDS film on the surface of borosilicate glass. Materials 10, 5, 555.
  • SHREVE, G.S., MAKULA, R., 2019. Characterization of a new rhamnolipid biosurfactant complex from pseudomonas isolate DYNA270. Biomolecules 9, 12, 885-896.
  • SMEATON, C., 2012. Investigating the Susceptibility of Jarosite Minerals to Reductive Dissolution by a Dissimilatory Metal Reducing Bacterium (Shewanella putrefaciens CN32). Electronic Theses and Dissertations. 450.
  • SOMASUNDARAN, P., SNELL, E.D., FU, E., XU, Q., 1992. Effect of adsorption of nonionic surfactant and non-ionic-anionic surfactant mixtures on silica-liquid interfacial properties. Colloids and Surfaces 63, 1-2, 49-54.
  • SU, G., DENG, X., HU, L., PRABURAMAN, L., ZHONG, H., HE, Z., 2020. Comparative analysis of early-stage adsorption and biofilm formation of thermoacidophilic archaeon Acidianus manzaensis YN-25 on chalcopyrite and pyrite surfaces. Biochemical Engineering Journal 163, 107744.
  • TUCKER, I.M., CORBETT, J.C.W., FATKIN, J., JACK, R.O., KASZUBA, M., MACCREATH, B., MCNEIL-WATSON, F., 2015. Laser Doppler Electrophoresis applied to colloids and surfaces. Current Opinion in Colloid and Interface Science 20, 4, 215-226.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-99291e70-ca5c-43ed-8767-ad33bd7b733f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.